Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(5-\sqrt{10}\right)}{\left(5+\sqrt{10}\right)\left(5-\sqrt{10}\right)}
Rationalize the denominator of \frac{9}{5+\sqrt{10}} by multiplying numerator and denominator by 5-\sqrt{10}.
\frac{9\left(5-\sqrt{10}\right)}{5^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(5+\sqrt{10}\right)\left(5-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(5-\sqrt{10}\right)}{25-10}
Square 5. Square \sqrt{10}.
\frac{9\left(5-\sqrt{10}\right)}{15}
Subtract 10 from 25 to get 15.
\frac{3}{5}\left(5-\sqrt{10}\right)
Divide 9\left(5-\sqrt{10}\right) by 15 to get \frac{3}{5}\left(5-\sqrt{10}\right).
\frac{3}{5}\times 5+\frac{3}{5}\left(-1\right)\sqrt{10}
Use the distributive property to multiply \frac{3}{5} by 5-\sqrt{10}.
3+\frac{3}{5}\left(-1\right)\sqrt{10}
Cancel out 5 and 5.
3-\frac{3}{5}\sqrt{10}
Multiply \frac{3}{5} and -1 to get -\frac{3}{5}.