Evaluate
-\frac{3\sqrt{10}}{5}+3\approx 1.102633404
Share
Copied to clipboard
\frac{9\left(5-\sqrt{10}\right)}{\left(5+\sqrt{10}\right)\left(5-\sqrt{10}\right)}
Rationalize the denominator of \frac{9}{5+\sqrt{10}} by multiplying numerator and denominator by 5-\sqrt{10}.
\frac{9\left(5-\sqrt{10}\right)}{5^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(5+\sqrt{10}\right)\left(5-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(5-\sqrt{10}\right)}{25-10}
Square 5. Square \sqrt{10}.
\frac{9\left(5-\sqrt{10}\right)}{15}
Subtract 10 from 25 to get 15.
\frac{3}{5}\left(5-\sqrt{10}\right)
Divide 9\left(5-\sqrt{10}\right) by 15 to get \frac{3}{5}\left(5-\sqrt{10}\right).
\frac{3}{5}\times 5+\frac{3}{5}\left(-1\right)\sqrt{10}
Use the distributive property to multiply \frac{3}{5} by 5-\sqrt{10}.
3+\frac{3}{5}\left(-1\right)\sqrt{10}
Cancel out 5 and 5.
3-\frac{3}{5}\sqrt{10}
Multiply \frac{3}{5} and -1 to get -\frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}