Verify
false
Share
Copied to clipboard
9-4\left(4-\frac{9}{4}\right)=5\left(9+1+\frac{9}{4}\right)
Multiply both sides of the equation by 4.
9-4\left(\frac{16}{4}-\frac{9}{4}\right)=5\left(9+1+\frac{9}{4}\right)
Convert 4 to fraction \frac{16}{4}.
9-4\times \frac{16-9}{4}=5\left(9+1+\frac{9}{4}\right)
Since \frac{16}{4} and \frac{9}{4} have the same denominator, subtract them by subtracting their numerators.
9-4\times \frac{7}{4}=5\left(9+1+\frac{9}{4}\right)
Subtract 9 from 16 to get 7.
9-7=5\left(9+1+\frac{9}{4}\right)
Cancel out 4 and 4.
2=5\left(9+1+\frac{9}{4}\right)
Subtract 7 from 9 to get 2.
2=5\left(10+\frac{9}{4}\right)
Add 9 and 1 to get 10.
2=5\left(\frac{40}{4}+\frac{9}{4}\right)
Convert 10 to fraction \frac{40}{4}.
2=5\times \frac{40+9}{4}
Since \frac{40}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
2=5\times \frac{49}{4}
Add 40 and 9 to get 49.
2=\frac{5\times 49}{4}
Express 5\times \frac{49}{4} as a single fraction.
2=\frac{245}{4}
Multiply 5 and 49 to get 245.
\frac{8}{4}=\frac{245}{4}
Convert 2 to fraction \frac{8}{4}.
\text{false}
Compare \frac{8}{4} and \frac{245}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}