Evaluate
\frac{24\sqrt{165}}{11}\approx 28.02596199
Share
Copied to clipboard
\frac{\frac{9}{4}\times 4\sqrt{3}}{\frac{3}{8}\sqrt{\frac{2\times 5+1}{5}}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{9\sqrt{3}}{\frac{3}{8}\sqrt{\frac{2\times 5+1}{5}}}
Cancel out 4 and 4.
\frac{9\sqrt{3}}{\frac{3}{8}\sqrt{\frac{10+1}{5}}}
Multiply 2 and 5 to get 10.
\frac{9\sqrt{3}}{\frac{3}{8}\sqrt{\frac{11}{5}}}
Add 10 and 1 to get 11.
\frac{9\sqrt{3}}{\frac{3}{8}\times \frac{\sqrt{11}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{11}{5}} as the division of square roots \frac{\sqrt{11}}{\sqrt{5}}.
\frac{9\sqrt{3}}{\frac{3}{8}\times \frac{\sqrt{11}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{9\sqrt{3}}{\frac{3}{8}\times \frac{\sqrt{11}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{9\sqrt{3}}{\frac{3}{8}\times \frac{\sqrt{55}}{5}}
To multiply \sqrt{11} and \sqrt{5}, multiply the numbers under the square root.
\frac{9\sqrt{3}}{\frac{3\sqrt{55}}{8\times 5}}
Multiply \frac{3}{8} times \frac{\sqrt{55}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{9\sqrt{3}\times 8\times 5}{3\sqrt{55}}
Divide 9\sqrt{3} by \frac{3\sqrt{55}}{8\times 5} by multiplying 9\sqrt{3} by the reciprocal of \frac{3\sqrt{55}}{8\times 5}.
\frac{3\times 5\times 8\sqrt{3}}{\sqrt{55}}
Cancel out 3 in both numerator and denominator.
\frac{3\times 5\times 8\sqrt{3}\sqrt{55}}{\left(\sqrt{55}\right)^{2}}
Rationalize the denominator of \frac{3\times 5\times 8\sqrt{3}}{\sqrt{55}} by multiplying numerator and denominator by \sqrt{55}.
\frac{3\times 5\times 8\sqrt{3}\sqrt{55}}{55}
The square of \sqrt{55} is 55.
\frac{15\times 8\sqrt{3}\sqrt{55}}{55}
Multiply 3 and 5 to get 15.
\frac{120\sqrt{3}\sqrt{55}}{55}
Multiply 15 and 8 to get 120.
\frac{120\sqrt{165}}{55}
To multiply \sqrt{3} and \sqrt{55}, multiply the numbers under the square root.
\frac{24}{11}\sqrt{165}
Divide 120\sqrt{165} by 55 to get \frac{24}{11}\sqrt{165}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}