Evaluate
\frac{13}{36}\approx 0.361111111
Factor
\frac{13}{2 ^ {2} \cdot 3 ^ {2}} = 0.3611111111111111
Share
Copied to clipboard
\frac{9}{20}-\frac{11}{5\times 6}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Multiply 4 and 5 to get 20.
\frac{9}{20}-\frac{11}{30}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Multiply 5 and 6 to get 30.
\frac{27}{60}-\frac{22}{60}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Least common multiple of 20 and 30 is 60. Convert \frac{9}{20} and \frac{11}{30} to fractions with denominator 60.
\frac{27-22}{60}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Since \frac{27}{60} and \frac{22}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{60}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Subtract 22 from 27 to get 5.
\frac{1}{12}+\frac{13}{6\times 7}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Reduce the fraction \frac{5}{60} to lowest terms by extracting and canceling out 5.
\frac{1}{12}+\frac{13}{42}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Multiply 6 and 7 to get 42.
\frac{7}{84}+\frac{26}{84}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Least common multiple of 12 and 42 is 84. Convert \frac{1}{12} and \frac{13}{42} to fractions with denominator 84.
\frac{7+26}{84}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Since \frac{7}{84} and \frac{26}{84} have the same denominator, add them by adding their numerators.
\frac{33}{84}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Add 7 and 26 to get 33.
\frac{11}{28}-\frac{15}{7\times 8}+\frac{17}{8\times 9}
Reduce the fraction \frac{33}{84} to lowest terms by extracting and canceling out 3.
\frac{11}{28}-\frac{15}{56}+\frac{17}{8\times 9}
Multiply 7 and 8 to get 56.
\frac{22}{56}-\frac{15}{56}+\frac{17}{8\times 9}
Least common multiple of 28 and 56 is 56. Convert \frac{11}{28} and \frac{15}{56} to fractions with denominator 56.
\frac{22-15}{56}+\frac{17}{8\times 9}
Since \frac{22}{56} and \frac{15}{56} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{56}+\frac{17}{8\times 9}
Subtract 15 from 22 to get 7.
\frac{1}{8}+\frac{17}{8\times 9}
Reduce the fraction \frac{7}{56} to lowest terms by extracting and canceling out 7.
\frac{1}{8}+\frac{17}{72}
Multiply 8 and 9 to get 72.
\frac{9}{72}+\frac{17}{72}
Least common multiple of 8 and 72 is 72. Convert \frac{1}{8} and \frac{17}{72} to fractions with denominator 72.
\frac{9+17}{72}
Since \frac{9}{72} and \frac{17}{72} have the same denominator, add them by adding their numerators.
\frac{26}{72}
Add 9 and 17 to get 26.
\frac{13}{36}
Reduce the fraction \frac{26}{72} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}