Evaluate
\frac{9k^{2}}{4k^{2}+3}
Differentiate w.r.t. k
\frac{54k}{\left(4k^{2}+3\right)^{2}}
Share
Copied to clipboard
\frac{9}{\frac{4k^{2}}{k^{2}}+\frac{3}{k^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{9}{\frac{4k^{2}+3}{k^{2}}}
Since \frac{4k^{2}}{k^{2}} and \frac{3}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{9k^{2}}{4k^{2}+3}
Divide 9 by \frac{4k^{2}+3}{k^{2}} by multiplying 9 by the reciprocal of \frac{4k^{2}+3}{k^{2}}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{9}{\frac{4k^{2}}{k^{2}}+\frac{3}{k^{2}}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{9}{\frac{4k^{2}+3}{k^{2}}})
Since \frac{4k^{2}}{k^{2}} and \frac{3}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{9k^{2}}{4k^{2}+3})
Divide 9 by \frac{4k^{2}+3}{k^{2}} by multiplying 9 by the reciprocal of \frac{4k^{2}+3}{k^{2}}.
\frac{\left(4k^{2}+3\right)\frac{\mathrm{d}}{\mathrm{d}k}(9k^{2})-9k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(4k^{2}+3)}{\left(4k^{2}+3\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(4k^{2}+3\right)\times 2\times 9k^{2-1}-9k^{2}\times 2\times 4k^{2-1}}{\left(4k^{2}+3\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(4k^{2}+3\right)\times 18k^{1}-9k^{2}\times 8k^{1}}{\left(4k^{2}+3\right)^{2}}
Do the arithmetic.
\frac{4k^{2}\times 18k^{1}+3\times 18k^{1}-9k^{2}\times 8k^{1}}{\left(4k^{2}+3\right)^{2}}
Expand using distributive property.
\frac{4\times 18k^{2+1}+3\times 18k^{1}-9\times 8k^{2+1}}{\left(4k^{2}+3\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{72k^{3}+54k^{1}-72k^{3}}{\left(4k^{2}+3\right)^{2}}
Do the arithmetic.
\frac{\left(72-72\right)k^{3}+54k^{1}}{\left(4k^{2}+3\right)^{2}}
Combine like terms.
\frac{54k^{1}}{\left(4k^{2}+3\right)^{2}}
Subtract 72 from 72.
\frac{54k}{\left(4k^{2}+3\right)^{2}}
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}