Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. h
Tick mark Image

Similar Problems from Web Search

Share

\frac{9}{3h^{2}-3k^{2}}+\frac{h}{h\left(h-k\right)}
Factor the expressions that are not already factored in \frac{h}{h^{2}-hk}.
\frac{9}{3h^{2}-3k^{2}}+\frac{1}{h-k}
Cancel out h in both numerator and denominator.
\frac{9}{3\left(h+k\right)\left(h-k\right)}+\frac{1}{h-k}
Factor 3h^{2}-3k^{2}.
\frac{9}{3\left(h+k\right)\left(h-k\right)}+\frac{3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(h+k\right)\left(h-k\right) and h-k is 3\left(h+k\right)\left(h-k\right). Multiply \frac{1}{h-k} times \frac{3\left(h+k\right)}{3\left(h+k\right)}.
\frac{9+3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)}
Since \frac{9}{3\left(h+k\right)\left(h-k\right)} and \frac{3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)} have the same denominator, add them by adding their numerators.
\frac{9+3h+3k}{3\left(h+k\right)\left(h-k\right)}
Do the multiplications in 9+3\left(h+k\right).
\frac{3\left(h+k+3\right)}{3\left(h+k\right)\left(h-k\right)}
Factor the expressions that are not already factored in \frac{9+3h+3k}{3\left(h+k\right)\left(h-k\right)}.
\frac{h+k+3}{\left(h+k\right)\left(h-k\right)}
Cancel out 3 in both numerator and denominator.
\frac{h+k+3}{h^{2}-k^{2}}
Expand \left(h+k\right)\left(h-k\right).