Evaluate
\frac{h+k+3}{h^{2}-k^{2}}
Differentiate w.r.t. h
\frac{-h^{2}-2hk-6h-k^{2}}{\left(h^{2}-k^{2}\right)^{2}}
Share
Copied to clipboard
\frac{9}{3h^{2}-3k^{2}}+\frac{h}{h\left(h-k\right)}
Factor the expressions that are not already factored in \frac{h}{h^{2}-hk}.
\frac{9}{3h^{2}-3k^{2}}+\frac{1}{h-k}
Cancel out h in both numerator and denominator.
\frac{9}{3\left(h+k\right)\left(h-k\right)}+\frac{1}{h-k}
Factor 3h^{2}-3k^{2}.
\frac{9}{3\left(h+k\right)\left(h-k\right)}+\frac{3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(h+k\right)\left(h-k\right) and h-k is 3\left(h+k\right)\left(h-k\right). Multiply \frac{1}{h-k} times \frac{3\left(h+k\right)}{3\left(h+k\right)}.
\frac{9+3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)}
Since \frac{9}{3\left(h+k\right)\left(h-k\right)} and \frac{3\left(h+k\right)}{3\left(h+k\right)\left(h-k\right)} have the same denominator, add them by adding their numerators.
\frac{9+3h+3k}{3\left(h+k\right)\left(h-k\right)}
Do the multiplications in 9+3\left(h+k\right).
\frac{3\left(h+k+3\right)}{3\left(h+k\right)\left(h-k\right)}
Factor the expressions that are not already factored in \frac{9+3h+3k}{3\left(h+k\right)\left(h-k\right)}.
\frac{h+k+3}{\left(h+k\right)\left(h-k\right)}
Cancel out 3 in both numerator and denominator.
\frac{h+k+3}{h^{2}-k^{2}}
Expand \left(h+k\right)\left(h-k\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}