Verify
false
Share
Copied to clipboard
3+\frac{1}{7}+\frac{2}{8}=\frac{1}{3}
Divide 9 by 3 to get 3.
\frac{21}{7}+\frac{1}{7}+\frac{2}{8}=\frac{1}{3}
Convert 3 to fraction \frac{21}{7}.
\frac{21+1}{7}+\frac{2}{8}=\frac{1}{3}
Since \frac{21}{7} and \frac{1}{7} have the same denominator, add them by adding their numerators.
\frac{22}{7}+\frac{2}{8}=\frac{1}{3}
Add 21 and 1 to get 22.
\frac{22}{7}+\frac{1}{4}=\frac{1}{3}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{88}{28}+\frac{7}{28}=\frac{1}{3}
Least common multiple of 7 and 4 is 28. Convert \frac{22}{7} and \frac{1}{4} to fractions with denominator 28.
\frac{88+7}{28}=\frac{1}{3}
Since \frac{88}{28} and \frac{7}{28} have the same denominator, add them by adding their numerators.
\frac{95}{28}=\frac{1}{3}
Add 88 and 7 to get 95.
\frac{285}{84}=\frac{28}{84}
Least common multiple of 28 and 3 is 84. Convert \frac{95}{28} and \frac{1}{3} to fractions with denominator 84.
\text{false}
Compare \frac{285}{84} and \frac{28}{84}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}