Solve for x
x = \frac{13}{10} = 1\frac{3}{10} = 1.3
Graph
Share
Copied to clipboard
\left(2x-1\right)\times 9-\left(2x+1\right)\times 8x=-4\left(2x-1\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,2x-1.
18x-9-\left(2x+1\right)\times 8x=-4\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply 2x-1 by 9.
18x-9-\left(16x+8\right)x=-4\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply 2x+1 by 8.
18x-9-\left(16x^{2}+8x\right)=-4\left(2x-1\right)\left(2x+1\right)
Use the distributive property to multiply 16x+8 by x.
18x-9-16x^{2}-8x=-4\left(2x-1\right)\left(2x+1\right)
To find the opposite of 16x^{2}+8x, find the opposite of each term.
10x-9-16x^{2}=-4\left(2x-1\right)\left(2x+1\right)
Combine 18x and -8x to get 10x.
10x-9-16x^{2}=\left(-8x+4\right)\left(2x+1\right)
Use the distributive property to multiply -4 by 2x-1.
10x-9-16x^{2}=-16x^{2}+4
Use the distributive property to multiply -8x+4 by 2x+1 and combine like terms.
10x-9-16x^{2}+16x^{2}=4
Add 16x^{2} to both sides.
10x-9=4
Combine -16x^{2} and 16x^{2} to get 0.
10x=4+9
Add 9 to both sides.
10x=13
Add 4 and 9 to get 13.
x=\frac{13}{10}
Divide both sides by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}