Evaluate
\frac{9}{2b}+\frac{b}{2a^{3}}-\frac{3}{a^{2}}
Factor
\frac{\frac{9a^{3}}{b}+b-6a}{2a^{3}}
Share
Copied to clipboard
\frac{9a^{2}}{2ba^{2}}-\frac{3\times 2b}{2ba^{2}}+\frac{b}{2a^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2b and a^{2} is 2ba^{2}. Multiply \frac{9}{2b} times \frac{a^{2}}{a^{2}}. Multiply \frac{3}{a^{2}} times \frac{2b}{2b}.
\frac{9a^{2}-3\times 2b}{2ba^{2}}+\frac{b}{2a^{3}}
Since \frac{9a^{2}}{2ba^{2}} and \frac{3\times 2b}{2ba^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{9a^{2}-6b}{2ba^{2}}+\frac{b}{2a^{3}}
Do the multiplications in 9a^{2}-3\times 2b.
\frac{\left(9a^{2}-6b\right)a}{2ba^{3}}+\frac{bb}{2ba^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2ba^{2} and 2a^{3} is 2ba^{3}. Multiply \frac{9a^{2}-6b}{2ba^{2}} times \frac{a}{a}. Multiply \frac{b}{2a^{3}} times \frac{b}{b}.
\frac{\left(9a^{2}-6b\right)a+bb}{2ba^{3}}
Since \frac{\left(9a^{2}-6b\right)a}{2ba^{3}} and \frac{bb}{2ba^{3}} have the same denominator, add them by adding their numerators.
\frac{9a^{3}-6ba+b^{2}}{2ba^{3}}
Do the multiplications in \left(9a^{2}-6b\right)a+bb.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}