Solve for d
d=-\frac{2}{3}i\approx -0.666666667i
d=\frac{2}{3}i\approx 0.666666667i
Share
Copied to clipboard
\frac{9}{2}d^{2}=4-6
Subtract 6 from both sides.
\frac{9}{2}d^{2}=-2
Subtract 6 from 4 to get -2.
d^{2}=-2\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}.
d^{2}=-\frac{4}{9}
Multiply -2 and \frac{2}{9} to get -\frac{4}{9}.
d=\frac{2}{3}i d=-\frac{2}{3}i
The equation is now solved.
\frac{9}{2}d^{2}+6-4=0
Subtract 4 from both sides.
\frac{9}{2}d^{2}+2=0
Subtract 4 from 6 to get 2.
d=\frac{0±\sqrt{0^{2}-4\times \frac{9}{2}\times 2}}{2\times \frac{9}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{9}{2} for a, 0 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times \frac{9}{2}\times 2}}{2\times \frac{9}{2}}
Square 0.
d=\frac{0±\sqrt{-18\times 2}}{2\times \frac{9}{2}}
Multiply -4 times \frac{9}{2}.
d=\frac{0±\sqrt{-36}}{2\times \frac{9}{2}}
Multiply -18 times 2.
d=\frac{0±6i}{2\times \frac{9}{2}}
Take the square root of -36.
d=\frac{0±6i}{9}
Multiply 2 times \frac{9}{2}.
d=\frac{2}{3}i
Now solve the equation d=\frac{0±6i}{9} when ± is plus.
d=-\frac{2}{3}i
Now solve the equation d=\frac{0±6i}{9} when ± is minus.
d=\frac{2}{3}i d=-\frac{2}{3}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}