Solve for x
x = \frac{61}{25} = 2\frac{11}{25} = 2.44
Graph
Share
Copied to clipboard
\frac{9}{2}\times 8x+\frac{9}{2}\times 4=14\left(10-x\right)
Use the distributive property to multiply \frac{9}{2} by 8x+4.
\frac{9\times 8}{2}x+\frac{9}{2}\times 4=14\left(10-x\right)
Express \frac{9}{2}\times 8 as a single fraction.
\frac{72}{2}x+\frac{9}{2}\times 4=14\left(10-x\right)
Multiply 9 and 8 to get 72.
36x+\frac{9}{2}\times 4=14\left(10-x\right)
Divide 72 by 2 to get 36.
36x+\frac{9\times 4}{2}=14\left(10-x\right)
Express \frac{9}{2}\times 4 as a single fraction.
36x+\frac{36}{2}=14\left(10-x\right)
Multiply 9 and 4 to get 36.
36x+18=14\left(10-x\right)
Divide 36 by 2 to get 18.
36x+18=140-14x
Use the distributive property to multiply 14 by 10-x.
36x+18+14x=140
Add 14x to both sides.
50x+18=140
Combine 36x and 14x to get 50x.
50x=140-18
Subtract 18 from both sides.
50x=122
Subtract 18 from 140 to get 122.
x=\frac{122}{50}
Divide both sides by 50.
x=\frac{61}{25}
Reduce the fraction \frac{122}{50} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}