Solve for a
a = -\frac{35}{3} = -11\frac{2}{3} \approx -11.666666667
Share
Copied to clipboard
2a+40=75\times \frac{2}{9}
Multiply both sides by \frac{2}{9}, the reciprocal of \frac{9}{2}.
2a+40=\frac{75\times 2}{9}
Express 75\times \frac{2}{9} as a single fraction.
2a+40=\frac{150}{9}
Multiply 75 and 2 to get 150.
2a+40=\frac{50}{3}
Reduce the fraction \frac{150}{9} to lowest terms by extracting and canceling out 3.
2a=\frac{50}{3}-40
Subtract 40 from both sides.
2a=\frac{50}{3}-\frac{120}{3}
Convert 40 to fraction \frac{120}{3}.
2a=\frac{50-120}{3}
Since \frac{50}{3} and \frac{120}{3} have the same denominator, subtract them by subtracting their numerators.
2a=-\frac{70}{3}
Subtract 120 from 50 to get -70.
a=\frac{-\frac{70}{3}}{2}
Divide both sides by 2.
a=\frac{-70}{3\times 2}
Express \frac{-\frac{70}{3}}{2} as a single fraction.
a=\frac{-70}{6}
Multiply 3 and 2 to get 6.
a=-\frac{35}{3}
Reduce the fraction \frac{-70}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}