Evaluate
-0.3125
Factor
-0.3125
Quiz
Arithmetic
5 problems similar to:
\frac { 9 } { 16 } - \sqrt { \frac { 9 } { 16 } } \quad 2.5 + 1
Share
Copied to clipboard
\frac{9}{16}-2.5\times \frac{3}{4}+1
Rewrite the square root of the division \frac{9}{16} as the division of square roots \frac{\sqrt{9}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{9}{16}-\frac{5}{2}\times \frac{3}{4}+1
Convert decimal number -2.5 to fraction -\frac{25}{10}. Reduce the fraction -\frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{9}{16}+\frac{-5\times 3}{2\times 4}+1
Multiply -\frac{5}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{16}+\frac{-15}{8}+1
Do the multiplications in the fraction \frac{-5\times 3}{2\times 4}.
\frac{9}{16}-\frac{15}{8}+1
Fraction \frac{-15}{8} can be rewritten as -\frac{15}{8} by extracting the negative sign.
\frac{9}{16}-\frac{30}{16}+1
Least common multiple of 16 and 8 is 16. Convert \frac{9}{16} and \frac{15}{8} to fractions with denominator 16.
\frac{9-30}{16}+1
Since \frac{9}{16} and \frac{30}{16} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{16}+1
Subtract 30 from 9 to get -21.
-\frac{21}{16}+\frac{16}{16}
Convert 1 to fraction \frac{16}{16}.
\frac{-21+16}{16}
Since -\frac{21}{16} and \frac{16}{16} have the same denominator, add them by adding their numerators.
-\frac{5}{16}
Add -21 and 16 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}