Solve for y
y = -\frac{67}{9} = -7\frac{4}{9} \approx -7.444444444
Graph
Share
Copied to clipboard
\frac{9}{14}y=-\frac{11}{2}+\frac{5}{7}
Add \frac{5}{7} to both sides.
\frac{9}{14}y=-\frac{77}{14}+\frac{10}{14}
Least common multiple of 2 and 7 is 14. Convert -\frac{11}{2} and \frac{5}{7} to fractions with denominator 14.
\frac{9}{14}y=\frac{-77+10}{14}
Since -\frac{77}{14} and \frac{10}{14} have the same denominator, add them by adding their numerators.
\frac{9}{14}y=-\frac{67}{14}
Add -77 and 10 to get -67.
y=-\frac{67}{14}\times \frac{14}{9}
Multiply both sides by \frac{14}{9}, the reciprocal of \frac{9}{14}.
y=\frac{-67\times 14}{14\times 9}
Multiply -\frac{67}{14} times \frac{14}{9} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-67}{9}
Cancel out 14 in both numerator and denominator.
y=-\frac{67}{9}
Fraction \frac{-67}{9} can be rewritten as -\frac{67}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}