Evaluate
1.875
Factor
\frac{3 \cdot 5}{2 ^ {3}} = 1\frac{7}{8} = 1.875
Share
Copied to clipboard
\frac{\frac{9}{14\times 0.6}}{1-\frac{3}{7}}
Express \frac{\frac{9}{14}}{0.6} as a single fraction.
\frac{\frac{9}{8.4}}{1-\frac{3}{7}}
Multiply 14 and 0.6 to get 8.4.
\frac{\frac{90}{84}}{1-\frac{3}{7}}
Expand \frac{9}{8.4} by multiplying both numerator and the denominator by 10.
\frac{\frac{15}{14}}{1-\frac{3}{7}}
Reduce the fraction \frac{90}{84} to lowest terms by extracting and canceling out 6.
\frac{\frac{15}{14}}{\frac{7}{7}-\frac{3}{7}}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{15}{14}}{\frac{7-3}{7}}
Since \frac{7}{7} and \frac{3}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{15}{14}}{\frac{4}{7}}
Subtract 3 from 7 to get 4.
\frac{15}{14}\times \frac{7}{4}
Divide \frac{15}{14} by \frac{4}{7} by multiplying \frac{15}{14} by the reciprocal of \frac{4}{7}.
\frac{15\times 7}{14\times 4}
Multiply \frac{15}{14} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{105}{56}
Do the multiplications in the fraction \frac{15\times 7}{14\times 4}.
\frac{15}{8}
Reduce the fraction \frac{105}{56} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}