Evaluate
\frac{1607}{1040}\approx 1.545192308
Factor
\frac{1607}{2 ^ {4} \cdot 5 \cdot 13} = 1\frac{567}{1040} = 1.5451923076923078
Share
Copied to clipboard
\frac{144}{208}+\frac{195}{208}-\left(\frac{5}{13}-\frac{3}{10}\right)
Least common multiple of 13 and 16 is 208. Convert \frac{9}{13} and \frac{15}{16} to fractions with denominator 208.
\frac{144+195}{208}-\left(\frac{5}{13}-\frac{3}{10}\right)
Since \frac{144}{208} and \frac{195}{208} have the same denominator, add them by adding their numerators.
\frac{339}{208}-\left(\frac{5}{13}-\frac{3}{10}\right)
Add 144 and 195 to get 339.
\frac{339}{208}-\left(\frac{50}{130}-\frac{39}{130}\right)
Least common multiple of 13 and 10 is 130. Convert \frac{5}{13} and \frac{3}{10} to fractions with denominator 130.
\frac{339}{208}-\frac{50-39}{130}
Since \frac{50}{130} and \frac{39}{130} have the same denominator, subtract them by subtracting their numerators.
\frac{339}{208}-\frac{11}{130}
Subtract 39 from 50 to get 11.
\frac{1695}{1040}-\frac{88}{1040}
Least common multiple of 208 and 130 is 1040. Convert \frac{339}{208} and \frac{11}{130} to fractions with denominator 1040.
\frac{1695-88}{1040}
Since \frac{1695}{1040} and \frac{88}{1040} have the same denominator, subtract them by subtracting their numerators.
\frac{1607}{1040}
Subtract 88 from 1695 to get 1607.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}