Solve for x
x = -\frac{53}{10} = -5\frac{3}{10} = -5.3
Graph
Share
Copied to clipboard
-\left(6+x\right)\times 9=x-1
Variable x cannot be equal to any of the values -6,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+6\right), the least common multiple of 1-x,6+x.
\left(-6-x\right)\times 9=x-1
To find the opposite of 6+x, find the opposite of each term.
-54-9x=x-1
Use the distributive property to multiply -6-x by 9.
-54-9x-x=-1
Subtract x from both sides.
-54-10x=-1
Combine -9x and -x to get -10x.
-10x=-1+54
Add 54 to both sides.
-10x=53
Add -1 and 54 to get 53.
x=\frac{53}{-10}
Divide both sides by -10.
x=-\frac{53}{10}
Fraction \frac{53}{-10} can be rewritten as -\frac{53}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}