Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+4i.
\frac{9\left(1+4i\right)}{1^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(1+4i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 1+9\times \left(4i\right)}{17}
Multiply 9 times 1+4i.
\frac{9+36i}{17}
Do the multiplications in 9\times 1+9\times \left(4i\right).
\frac{9}{17}+\frac{36}{17}i
Divide 9+36i by 17 to get \frac{9}{17}+\frac{36}{17}i.
Re(\frac{9\left(1+4i\right)}{\left(1-4i\right)\left(1+4i\right)})
Multiply both numerator and denominator of \frac{9}{1-4i} by the complex conjugate of the denominator, 1+4i.
Re(\frac{9\left(1+4i\right)}{1^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{9\left(1+4i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 1+9\times \left(4i\right)}{17})
Multiply 9 times 1+4i.
Re(\frac{9+36i}{17})
Do the multiplications in 9\times 1+9\times \left(4i\right).
Re(\frac{9}{17}+\frac{36}{17}i)
Divide 9+36i by 17 to get \frac{9}{17}+\frac{36}{17}i.
\frac{9}{17}
The real part of \frac{9}{17}+\frac{36}{17}i is \frac{9}{17}.