Evaluate
-\frac{9\left(x+2\right)}{\left(6-x\right)\left(x+3\right)}
Expand
\frac{9\left(x+2\right)}{\left(x-6\right)\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{9\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{10\left(-1\right)}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-6 and \left(6-x\right)\left(x+4\right) is \left(x-6\right)\left(x+4\right). Multiply \frac{9}{x-6} times \frac{x+4}{x+4}. Multiply \frac{10}{\left(6-x\right)\left(x+4\right)} times \frac{-1}{-1}.
\frac{9\left(x+4\right)+10\left(-1\right)}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{9\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} and \frac{10\left(-1\right)}{\left(x-6\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x+36-10}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in 9\left(x+4\right)+10\left(-1\right).
\frac{9x+26}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x+36-10.
\frac{\left(9x+26\right)\left(x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}+\frac{x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+4\right) and \left(x+3\right)\left(x+4\right) is \left(x-6\right)\left(x+3\right)\left(x+4\right). Multiply \frac{9x+26}{\left(x-6\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{\left(x+3\right)\left(x+4\right)} times \frac{x-6}{x-6}.
\frac{\left(9x+26\right)\left(x+3\right)+x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Since \frac{\left(9x+26\right)\left(x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)} and \frac{x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}+27x+26x+78+x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(9x+26\right)\left(x+3\right)+x-6.
\frac{9x^{2}+54x+72}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x^{2}+27x+26x+78+x-6.
\frac{9\left(x+2\right)\left(x+4\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+54x+72}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}.
\frac{9\left(x+2\right)}{\left(x-6\right)\left(x+3\right)}
Cancel out x+4 in both numerator and denominator.
\frac{9\left(x+2\right)}{x^{2}-3x-18}
Expand \left(x-6\right)\left(x+3\right).
\frac{9x+18}{x^{2}-3x-18}
Use the distributive property to multiply 9 by x+2.
\frac{9\left(x+4\right)}{\left(x-6\right)\left(x+4\right)}+\frac{10\left(-1\right)}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-6 and \left(6-x\right)\left(x+4\right) is \left(x-6\right)\left(x+4\right). Multiply \frac{9}{x-6} times \frac{x+4}{x+4}. Multiply \frac{10}{\left(6-x\right)\left(x+4\right)} times \frac{-1}{-1}.
\frac{9\left(x+4\right)+10\left(-1\right)}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{9\left(x+4\right)}{\left(x-6\right)\left(x+4\right)} and \frac{10\left(-1\right)}{\left(x-6\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x+36-10}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in 9\left(x+4\right)+10\left(-1\right).
\frac{9x+26}{\left(x-6\right)\left(x+4\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x+36-10.
\frac{\left(9x+26\right)\left(x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}+\frac{x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+4\right) and \left(x+3\right)\left(x+4\right) is \left(x-6\right)\left(x+3\right)\left(x+4\right). Multiply \frac{9x+26}{\left(x-6\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{\left(x+3\right)\left(x+4\right)} times \frac{x-6}{x-6}.
\frac{\left(9x+26\right)\left(x+3\right)+x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Since \frac{\left(9x+26\right)\left(x+3\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)} and \frac{x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}+27x+26x+78+x-6}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(9x+26\right)\left(x+3\right)+x-6.
\frac{9x^{2}+54x+72}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x^{2}+27x+26x+78+x-6.
\frac{9\left(x+2\right)\left(x+4\right)}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+54x+72}{\left(x-6\right)\left(x+3\right)\left(x+4\right)}.
\frac{9\left(x+2\right)}{\left(x-6\right)\left(x+3\right)}
Cancel out x+4 in both numerator and denominator.
\frac{9\left(x+2\right)}{x^{2}-3x-18}
Expand \left(x-6\right)\left(x+3\right).
\frac{9x+18}{x^{2}-3x-18}
Use the distributive property to multiply 9 by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}