Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Rationalize the denominator of \frac{9}{\sqrt{7}-2} by multiplying numerator and denominator by \sqrt{7}+2.
\frac{9\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Consider \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(\sqrt{7}+2\right)}{7-4}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Square \sqrt{7}. Square 2.
\frac{9\left(\sqrt{7}+2\right)}{3}-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Subtract 4 from 7 to get 3.
3\left(\sqrt{7}+2\right)-\frac{4}{3+\sqrt{7}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Divide 9\left(\sqrt{7}+2\right) by 3 to get 3\left(\sqrt{7}+2\right).
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{5}{\sqrt{6}-\sqrt{7}}
Rationalize the denominator of \frac{4}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}+\frac{5}{\sqrt{6}-\sqrt{7}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{9-7}+\frac{5}{\sqrt{6}-\sqrt{7}}
Square 3. Square \sqrt{7}.
3\left(\sqrt{7}+2\right)-\frac{4\left(3-\sqrt{7}\right)}{2}+\frac{5}{\sqrt{6}-\sqrt{7}}
Subtract 7 from 9 to get 2.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5}{\sqrt{6}-\sqrt{7}}
Divide 4\left(3-\sqrt{7}\right) by 2 to get 2\left(3-\sqrt{7}\right).
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right)}
Rationalize the denominator of \frac{5}{\sqrt{6}-\sqrt{7}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{6}-\sqrt{7}\right)\left(\sqrt{6}+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{6-7}
Square \sqrt{6}. Square \sqrt{7}.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)+\frac{5\left(\sqrt{6}+\sqrt{7}\right)}{-1}
Subtract 7 from 6 to get -1.
3\left(\sqrt{7}+2\right)-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Anything divided by -1 gives its opposite.
3\sqrt{7}+6-2\left(3-\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Use the distributive property to multiply 3 by \sqrt{7}+2.
3\sqrt{7}+6-\left(6-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
Use the distributive property to multiply 2 by 3-\sqrt{7}.
3\sqrt{7}+6-6-\left(-2\sqrt{7}\right)-5\left(\sqrt{6}+\sqrt{7}\right)
To find the opposite of 6-2\sqrt{7}, find the opposite of each term.
3\sqrt{7}+6-6+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
The opposite of -2\sqrt{7} is 2\sqrt{7}.
3\sqrt{7}+2\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
Subtract 6 from 6 to get 0.
5\sqrt{7}-5\left(\sqrt{6}+\sqrt{7}\right)
Combine 3\sqrt{7} and 2\sqrt{7} to get 5\sqrt{7}.
5\sqrt{7}-5\sqrt{6}-5\sqrt{7}
Use the distributive property to multiply -5 by \sqrt{6}+\sqrt{7}.
-5\sqrt{6}
Combine 5\sqrt{7} and -5\sqrt{7} to get 0.