Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{6}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{9}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{9\sqrt{3}}{3}+\frac{6}{\sqrt{5}+\sqrt{3}}
The square of \sqrt{3} is 3.
3\sqrt{3}+\frac{6}{\sqrt{5}+\sqrt{3}}
Divide 9\sqrt{3} by 3 to get 3\sqrt{3}.
3\sqrt{3}+\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{6}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
3\sqrt{3}+\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\sqrt{3}+\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
3\sqrt{3}+\frac{6\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
3\sqrt{3}+3\left(\sqrt{5}-\sqrt{3}\right)
Divide 6\left(\sqrt{5}-\sqrt{3}\right) by 2 to get 3\left(\sqrt{5}-\sqrt{3}\right).
3\sqrt{3}+3\sqrt{5}-3\sqrt{3}
Use the distributive property to multiply 3 by \sqrt{5}-\sqrt{3}.
3\sqrt{5}
Combine 3\sqrt{3} and -3\sqrt{3} to get 0.