Evaluate
-\frac{32}{11}\approx -2.909090909
Factor
-\frac{32}{11} = -2\frac{10}{11} = -2.909090909090909
Share
Copied to clipboard
\frac{\frac{27+5}{3}}{3-\frac{5\times 3+5}{3}}
Multiply 9 and 3 to get 27.
\frac{\frac{32}{3}}{3-\frac{5\times 3+5}{3}}
Add 27 and 5 to get 32.
\frac{\frac{32}{3}}{3-\frac{15+5}{3}}
Multiply 5 and 3 to get 15.
\frac{\frac{32}{3}}{3-\frac{20}{3}}
Add 15 and 5 to get 20.
\frac{\frac{32}{3}}{\frac{9}{3}-\frac{20}{3}}
Convert 3 to fraction \frac{9}{3}.
\frac{\frac{32}{3}}{\frac{9-20}{3}}
Since \frac{9}{3} and \frac{20}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{32}{3}}{-\frac{11}{3}}
Subtract 20 from 9 to get -11.
\frac{32}{3}\left(-\frac{3}{11}\right)
Divide \frac{32}{3} by -\frac{11}{3} by multiplying \frac{32}{3} by the reciprocal of -\frac{11}{3}.
\frac{32\left(-3\right)}{3\times 11}
Multiply \frac{32}{3} times -\frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-96}{33}
Do the multiplications in the fraction \frac{32\left(-3\right)}{3\times 11}.
-\frac{32}{11}
Reduce the fraction \frac{-96}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}