Evaluate
\frac{\sqrt{15}}{20}\approx 0.193649167
Share
Copied to clipboard
\frac{18+44-20}{56\sqrt{15}}
Multiply 9 and 2 to get 18. Multiply 4 and 11 to get 44. Multiply -2 and 10 to get -20.
\frac{62-20}{56\sqrt{15}}
Add 18 and 44 to get 62.
\frac{42}{56\sqrt{15}}
Subtract 20 from 62 to get 42.
\frac{42\sqrt{15}}{56\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{42}{56\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{42\sqrt{15}}{56\times 15}
The square of \sqrt{15} is 15.
\frac{\sqrt{15}}{4\times 5}
Cancel out 3\times 14 in both numerator and denominator.
\frac{\sqrt{15}}{20}
Multiply 4 and 5 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}