\frac { 9 \cdot 10 ^ { 8 } \cdot 3,2 \cdot 1,6 \cdot 10 ^ { - 19 } \cdot 10 ^ { - 19 } } { ( 0,2 \cdot 10 ^ { - 15 } ) \cdot 3 \cdot 3 } =
Evaluate
0,0000000000000256
Factor
\frac{1}{2 ^ {8} \cdot 5 ^ {16}} = 2.56 \times 10^{-14}
Share
Copied to clipboard
\frac{9\times 10^{-11}\times 3,2\times 1,6\times 10^{-19}}{0,2\times 10^{-15}\times 3\times 3}
To multiply powers of the same base, add their exponents. Add 8 and -19 to get -11.
\frac{9\times 10^{-30}\times 3,2\times 1,6}{0,2\times 10^{-15}\times 3\times 3}
To multiply powers of the same base, add their exponents. Add -11 and -19 to get -30.
\frac{1,6\times 3,2\times 10^{-30}}{0,2\times 10^{-15}}
Cancel out 3\times 3 in both numerator and denominator.
\frac{1,6\times 3,2}{0,2\times 10^{15}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{5,12}{0,2\times 10^{15}}
Multiply 1,6 and 3,2 to get 5,12.
\frac{5,12}{0,2\times 1000000000000000}
Calculate 10 to the power of 15 and get 1000000000000000.
\frac{5,12}{200000000000000}
Multiply 0,2 and 1000000000000000 to get 200000000000000.
\frac{512}{20000000000000000}
Expand \frac{5,12}{200000000000000} by multiplying both numerator and the denominator by 100.
\frac{1}{39062500000000}
Reduce the fraction \frac{512}{20000000000000000} to lowest terms by extracting and canceling out 512.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}