Verify
false
Share
Copied to clipboard
\frac{9^{4}\times 3^{7}-27}{\left(5^{2}\right)^{5}\times 2^{3}}=\frac{1}{27}
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{9^{4}\times 3^{7}-27}{5^{10}\times 2^{3}}=\frac{1}{27}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{6561\times 3^{7}-27}{5^{10}\times 2^{3}}=\frac{1}{27}
Calculate 9 to the power of 4 and get 6561.
\frac{6561\times 2187-27}{5^{10}\times 2^{3}}=\frac{1}{27}
Calculate 3 to the power of 7 and get 2187.
\frac{14348907-27}{5^{10}\times 2^{3}}=\frac{1}{27}
Multiply 6561 and 2187 to get 14348907.
\frac{14348880}{5^{10}\times 2^{3}}=\frac{1}{27}
Subtract 27 from 14348907 to get 14348880.
\frac{14348880}{9765625\times 2^{3}}=\frac{1}{27}
Calculate 5 to the power of 10 and get 9765625.
\frac{14348880}{9765625\times 8}=\frac{1}{27}
Calculate 2 to the power of 3 and get 8.
\frac{14348880}{78125000}=\frac{1}{27}
Multiply 9765625 and 8 to get 78125000.
\frac{358722}{1953125}=\frac{1}{27}
Reduce the fraction \frac{14348880}{78125000} to lowest terms by extracting and canceling out 40.
\frac{9685494}{52734375}=\frac{1953125}{52734375}
Least common multiple of 1953125 and 27 is 52734375. Convert \frac{358722}{1953125} and \frac{1}{27} to fractions with denominator 52734375.
\text{false}
Compare \frac{9685494}{52734375} and \frac{1953125}{52734375}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}