Evaluate
-\frac{s+9}{s-9}
Expand
-\frac{s+9}{s-9}
Quiz
Polynomial
\frac { 9 ^ { 2 } } { ( s - 9 ) ^ { 2 } } - \frac { s ^ { 2 } } { ( s - 9 ) ^ { 2 } } =
Share
Copied to clipboard
\frac{81}{\left(s-9\right)^{2}}-\frac{s^{2}}{\left(s-9\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{81-s^{2}}{\left(s-9\right)^{2}}
Since \frac{81}{\left(s-9\right)^{2}} and \frac{s^{2}}{\left(s-9\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(s-9\right)\left(-s-9\right)}{\left(s-9\right)^{2}}
Factor the expressions that are not already factored in \frac{81-s^{2}}{\left(s-9\right)^{2}}.
\frac{-s-9}{s-9}
Cancel out s-9 in both numerator and denominator.
\frac{81}{\left(s-9\right)^{2}}-\frac{s^{2}}{\left(s-9\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{81-s^{2}}{\left(s-9\right)^{2}}
Since \frac{81}{\left(s-9\right)^{2}} and \frac{s^{2}}{\left(s-9\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(s-9\right)\left(-s-9\right)}{\left(s-9\right)^{2}}
Factor the expressions that are not already factored in \frac{81-s^{2}}{\left(s-9\right)^{2}}.
\frac{-s-9}{s-9}
Cancel out s-9 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}