Evaluate
\frac{18}{145}+\frac{129}{145}i\approx 0.124137931+0.889655172i
Real Part
\frac{18}{145} = 0.12413793103448276
Share
Copied to clipboard
\frac{\left(9+6i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+9i.
\frac{\left(9+6i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+6i\right)\left(8+9i\right)}{145}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9i^{2}}{145}
Multiply complex numbers 9+6i and 8+9i like you multiply binomials.
\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right)}{145}
By definition, i^{2} is -1.
\frac{72+81i+48i-54}{145}
Do the multiplications in 9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right).
\frac{72-54+\left(81+48\right)i}{145}
Combine the real and imaginary parts in 72+81i+48i-54.
\frac{18+129i}{145}
Do the additions in 72-54+\left(81+48\right)i.
\frac{18}{145}+\frac{129}{145}i
Divide 18+129i by 145 to get \frac{18}{145}+\frac{129}{145}i.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)})
Multiply both numerator and denominator of \frac{9+6i}{8-9i} by the complex conjugate of the denominator, 8+9i.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{145})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9i^{2}}{145})
Multiply complex numbers 9+6i and 8+9i like you multiply binomials.
Re(\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right)}{145})
By definition, i^{2} is -1.
Re(\frac{72+81i+48i-54}{145})
Do the multiplications in 9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right).
Re(\frac{72-54+\left(81+48\right)i}{145})
Combine the real and imaginary parts in 72+81i+48i-54.
Re(\frac{18+129i}{145})
Do the additions in 72-54+\left(81+48\right)i.
Re(\frac{18}{145}+\frac{129}{145}i)
Divide 18+129i by 145 to get \frac{18}{145}+\frac{129}{145}i.
\frac{18}{145}
The real part of \frac{18}{145}+\frac{129}{145}i is \frac{18}{145}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}