Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9+6i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+9i.
\frac{\left(9+6i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+6i\right)\left(8+9i\right)}{145}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9i^{2}}{145}
Multiply complex numbers 9+6i and 8+9i like you multiply binomials.
\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right)}{145}
By definition, i^{2} is -1.
\frac{72+81i+48i-54}{145}
Do the multiplications in 9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right).
\frac{72-54+\left(81+48\right)i}{145}
Combine the real and imaginary parts in 72+81i+48i-54.
\frac{18+129i}{145}
Do the additions in 72-54+\left(81+48\right)i.
\frac{18}{145}+\frac{129}{145}i
Divide 18+129i by 145 to get \frac{18}{145}+\frac{129}{145}i.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{\left(8-9i\right)\left(8+9i\right)})
Multiply both numerator and denominator of \frac{9+6i}{8-9i} by the complex conjugate of the denominator, 8+9i.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{8^{2}-9^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+6i\right)\left(8+9i\right)}{145})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9i^{2}}{145})
Multiply complex numbers 9+6i and 8+9i like you multiply binomials.
Re(\frac{9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right)}{145})
By definition, i^{2} is -1.
Re(\frac{72+81i+48i-54}{145})
Do the multiplications in 9\times 8+9\times \left(9i\right)+6i\times 8+6\times 9\left(-1\right).
Re(\frac{72-54+\left(81+48\right)i}{145})
Combine the real and imaginary parts in 72+81i+48i-54.
Re(\frac{18+129i}{145})
Do the additions in 72-54+\left(81+48\right)i.
Re(\frac{18}{145}+\frac{129}{145}i)
Divide 18+129i by 145 to get \frac{18}{145}+\frac{129}{145}i.
\frac{18}{145}
The real part of \frac{18}{145}+\frac{129}{145}i is \frac{18}{145}.