Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}
Rationalize the denominator of \frac{9+2\sqrt{2}}{\sqrt{2}-2} by multiplying numerator and denominator by \sqrt{2}+2.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}
Consider \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{2-4}
Square \sqrt{2}. Square 2.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{-2}
Subtract 4 from 2 to get -2.
\frac{9\sqrt{2}+18+2\left(\sqrt{2}\right)^{2}+4\sqrt{2}}{-2}
Apply the distributive property by multiplying each term of 9+2\sqrt{2} by each term of \sqrt{2}+2.
\frac{9\sqrt{2}+18+2\times 2+4\sqrt{2}}{-2}
The square of \sqrt{2} is 2.
\frac{9\sqrt{2}+18+4+4\sqrt{2}}{-2}
Multiply 2 and 2 to get 4.
\frac{9\sqrt{2}+22+4\sqrt{2}}{-2}
Add 18 and 4 to get 22.
\frac{13\sqrt{2}+22}{-2}
Combine 9\sqrt{2} and 4\sqrt{2} to get 13\sqrt{2}.
\frac{-13\sqrt{2}-22}{2}
Multiply both numerator and denominator by -1.