Evaluate
-\frac{13\sqrt{2}}{2}-11\approx -20.192388155
Share
Copied to clipboard
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}
Rationalize the denominator of \frac{9+2\sqrt{2}}{\sqrt{2}-2} by multiplying numerator and denominator by \sqrt{2}+2.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}
Consider \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{2-4}
Square \sqrt{2}. Square 2.
\frac{\left(9+2\sqrt{2}\right)\left(\sqrt{2}+2\right)}{-2}
Subtract 4 from 2 to get -2.
\frac{9\sqrt{2}+18+2\left(\sqrt{2}\right)^{2}+4\sqrt{2}}{-2}
Apply the distributive property by multiplying each term of 9+2\sqrt{2} by each term of \sqrt{2}+2.
\frac{9\sqrt{2}+18+2\times 2+4\sqrt{2}}{-2}
The square of \sqrt{2} is 2.
\frac{9\sqrt{2}+18+4+4\sqrt{2}}{-2}
Multiply 2 and 2 to get 4.
\frac{9\sqrt{2}+22+4\sqrt{2}}{-2}
Add 18 and 4 to get 22.
\frac{13\sqrt{2}+22}{-2}
Combine 9\sqrt{2} and 4\sqrt{2} to get 13\sqrt{2}.
\frac{-13\sqrt{2}-22}{2}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}