Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{\left(9+i\right)\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+i\right)\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 1+9\left(-i\right)+i-i^{2}}{2}
Multiply complex numbers 9+i and 1-i like you multiply binomials.
\frac{9\times 1+9\left(-i\right)+i-\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{9-9i+i+1}{2}
Do the multiplications in 9\times 1+9\left(-i\right)+i-\left(-1\right).
\frac{9+1+\left(-9+1\right)i}{2}
Combine the real and imaginary parts in 9-9i+i+1.
\frac{10-8i}{2}
Do the additions in 9+1+\left(-9+1\right)i.
5-4i
Divide 10-8i by 2 to get 5-4i.
Re(\frac{\left(9+i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{9+i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{\left(9+i\right)\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+i\right)\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 1+9\left(-i\right)+i-i^{2}}{2})
Multiply complex numbers 9+i and 1-i like you multiply binomials.
Re(\frac{9\times 1+9\left(-i\right)+i-\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{9-9i+i+1}{2})
Do the multiplications in 9\times 1+9\left(-i\right)+i-\left(-1\right).
Re(\frac{9+1+\left(-9+1\right)i}{2})
Combine the real and imaginary parts in 9-9i+i+1.
Re(\frac{10-8i}{2})
Do the additions in 9+1+\left(-9+1\right)i.
Re(5-4i)
Divide 10-8i by 2 to get 5-4i.
5
The real part of 5-4i is 5.