Evaluate
\frac{8945}{22}\approx 406.590909091
Factor
\frac{5 \cdot 1789}{2 \cdot 11} = 406\frac{13}{22} = 406.59090909090907
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)8945}\\\end{array}
Use the 1^{st} digit 8 from dividend 8945
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)8945}\\\end{array}
Since 8 is less than 22, use the next digit 9 from dividend 8945 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)8945}\\\end{array}
Use the 2^{nd} digit 9 from dividend 8945
\begin{array}{l}\phantom{22)}04\phantom{4}\\22\overline{)8945}\\\phantom{22)}\underline{\phantom{}88\phantom{99}}\\\phantom{22)9}1\\\end{array}
Find closest multiple of 22 to 89. We see that 4 \times 22 = 88 is the nearest. Now subtract 88 from 89 to get reminder 1. Add 4 to quotient.
\begin{array}{l}\phantom{22)}04\phantom{5}\\22\overline{)8945}\\\phantom{22)}\underline{\phantom{}88\phantom{99}}\\\phantom{22)9}14\\\end{array}
Use the 3^{rd} digit 4 from dividend 8945
\begin{array}{l}\phantom{22)}040\phantom{6}\\22\overline{)8945}\\\phantom{22)}\underline{\phantom{}88\phantom{99}}\\\phantom{22)9}14\\\end{array}
Since 14 is less than 22, use the next digit 5 from dividend 8945 and add 0 to the quotient
\begin{array}{l}\phantom{22)}040\phantom{7}\\22\overline{)8945}\\\phantom{22)}\underline{\phantom{}88\phantom{99}}\\\phantom{22)9}145\\\end{array}
Use the 4^{th} digit 5 from dividend 8945
\begin{array}{l}\phantom{22)}0406\phantom{8}\\22\overline{)8945}\\\phantom{22)}\underline{\phantom{}88\phantom{99}}\\\phantom{22)9}145\\\phantom{22)}\underline{\phantom{9}132\phantom{}}\\\phantom{22)99}13\\\end{array}
Find closest multiple of 22 to 145. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 145 to get reminder 13. Add 6 to quotient.
\text{Quotient: }406 \text{Reminder: }13
Since 13 is less than 22, stop the division. The reminder is 13. The topmost line 0406 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 406.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}