Evaluate
\frac{89399}{58}\approx 1541.362068966
Factor
\frac{89399}{2 \cdot 29} = 1541\frac{21}{58} = 1541.3620689655172
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)89399}\\\end{array}
Use the 1^{st} digit 8 from dividend 89399
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)89399}\\\end{array}
Since 8 is less than 58, use the next digit 9 from dividend 89399 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)89399}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89399
\begin{array}{l}\phantom{58)}01\phantom{4}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}31\\\end{array}
Find closest multiple of 58 to 89. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 89 to get reminder 31. Add 1 to quotient.
\begin{array}{l}\phantom{58)}01\phantom{5}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\end{array}
Use the 3^{rd} digit 3 from dividend 89399
\begin{array}{l}\phantom{58)}015\phantom{6}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}23\\\end{array}
Find closest multiple of 58 to 313. We see that 5 \times 58 = 290 is the nearest. Now subtract 290 from 313 to get reminder 23. Add 5 to quotient.
\begin{array}{l}\phantom{58)}015\phantom{7}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}239\\\end{array}
Use the 4^{th} digit 9 from dividend 89399
\begin{array}{l}\phantom{58)}0154\phantom{8}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}239\\\phantom{58)}\underline{\phantom{9}232\phantom{9}}\\\phantom{58)999}7\\\end{array}
Find closest multiple of 58 to 239. We see that 4 \times 58 = 232 is the nearest. Now subtract 232 from 239 to get reminder 7. Add 4 to quotient.
\begin{array}{l}\phantom{58)}0154\phantom{9}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}239\\\phantom{58)}\underline{\phantom{9}232\phantom{9}}\\\phantom{58)999}79\\\end{array}
Use the 5^{th} digit 9 from dividend 89399
\begin{array}{l}\phantom{58)}01541\phantom{10}\\58\overline{)89399}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}313\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}239\\\phantom{58)}\underline{\phantom{9}232\phantom{9}}\\\phantom{58)999}79\\\phantom{58)}\underline{\phantom{999}58\phantom{}}\\\phantom{58)999}21\\\end{array}
Find closest multiple of 58 to 79. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 79 to get reminder 21. Add 1 to quotient.
\text{Quotient: }1541 \text{Reminder: }21
Since 21 is less than 58, stop the division. The reminder is 21. The topmost line 01541 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1541.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}