Evaluate
\frac{29719}{18278}\approx 1.625943758
Factor
\frac{113 \cdot 263}{2 \cdot 13 \cdot 19 \cdot 37} = 1\frac{11441}{18278} = 1.625943757522705
Share
Copied to clipboard
\begin{array}{l}\phantom{54834)}\phantom{1}\\54834\overline{)89157}\\\end{array}
Use the 1^{st} digit 8 from dividend 89157
\begin{array}{l}\phantom{54834)}0\phantom{2}\\54834\overline{)89157}\\\end{array}
Since 8 is less than 54834, use the next digit 9 from dividend 89157 and add 0 to the quotient
\begin{array}{l}\phantom{54834)}0\phantom{3}\\54834\overline{)89157}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89157
\begin{array}{l}\phantom{54834)}00\phantom{4}\\54834\overline{)89157}\\\end{array}
Since 89 is less than 54834, use the next digit 1 from dividend 89157 and add 0 to the quotient
\begin{array}{l}\phantom{54834)}00\phantom{5}\\54834\overline{)89157}\\\end{array}
Use the 3^{rd} digit 1 from dividend 89157
\begin{array}{l}\phantom{54834)}000\phantom{6}\\54834\overline{)89157}\\\end{array}
Since 891 is less than 54834, use the next digit 5 from dividend 89157 and add 0 to the quotient
\begin{array}{l}\phantom{54834)}000\phantom{7}\\54834\overline{)89157}\\\end{array}
Use the 4^{th} digit 5 from dividend 89157
\begin{array}{l}\phantom{54834)}0000\phantom{8}\\54834\overline{)89157}\\\end{array}
Since 8915 is less than 54834, use the next digit 7 from dividend 89157 and add 0 to the quotient
\begin{array}{l}\phantom{54834)}0000\phantom{9}\\54834\overline{)89157}\\\end{array}
Use the 5^{th} digit 7 from dividend 89157
\begin{array}{l}\phantom{54834)}00001\phantom{10}\\54834\overline{)89157}\\\phantom{54834)}\underline{\phantom{}54834\phantom{}}\\\phantom{54834)}34323\\\end{array}
Find closest multiple of 54834 to 89157. We see that 1 \times 54834 = 54834 is the nearest. Now subtract 54834 from 89157 to get reminder 34323. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }34323
Since 34323 is less than 54834, stop the division. The reminder is 34323. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}