Evaluate
\frac{89}{14}\approx 6.357142857
Factor
\frac{89}{2 \cdot 7} = 6\frac{5}{14} = 6.357142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)89}\\\end{array}
Since 8 is less than 14, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{14)}06\phantom{4}\\14\overline{)89}\\\phantom{14)}\underline{\phantom{}84\phantom{}}\\\phantom{14)9}5\\\end{array}
Find closest multiple of 14 to 89. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 89 to get reminder 5. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }5
Since 5 is less than 14, stop the division. The reminder is 5. The topmost line 06 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}