Evaluate
\frac{883}{14}\approx 63.071428571
Factor
\frac{883}{2 \cdot 7} = 63\frac{1}{14} = 63.07142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)883}\\\end{array}
Use the 1^{st} digit 8 from dividend 883
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)883}\\\end{array}
Since 8 is less than 14, use the next digit 8 from dividend 883 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)883}\\\end{array}
Use the 2^{nd} digit 8 from dividend 883
\begin{array}{l}\phantom{14)}06\phantom{4}\\14\overline{)883}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}4\\\end{array}
Find closest multiple of 14 to 88. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 88 to get reminder 4. Add 6 to quotient.
\begin{array}{l}\phantom{14)}06\phantom{5}\\14\overline{)883}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}43\\\end{array}
Use the 3^{rd} digit 3 from dividend 883
\begin{array}{l}\phantom{14)}063\phantom{6}\\14\overline{)883}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}43\\\phantom{14)}\underline{\phantom{9}42\phantom{}}\\\phantom{14)99}1\\\end{array}
Find closest multiple of 14 to 43. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 43 to get reminder 1. Add 3 to quotient.
\text{Quotient: }63 \text{Reminder: }1
Since 1 is less than 14, stop the division. The reminder is 1. The topmost line 063 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}