Evaluate
\frac{44}{39}\approx 1.128205128
Factor
\frac{2 ^ {2} \cdot 11}{3 \cdot 13} = 1\frac{5}{39} = 1.1282051282051282
Share
Copied to clipboard
\begin{array}{l}\phantom{78)}\phantom{1}\\78\overline{)88}\\\end{array}
Use the 1^{st} digit 8 from dividend 88
\begin{array}{l}\phantom{78)}0\phantom{2}\\78\overline{)88}\\\end{array}
Since 8 is less than 78, use the next digit 8 from dividend 88 and add 0 to the quotient
\begin{array}{l}\phantom{78)}0\phantom{3}\\78\overline{)88}\\\end{array}
Use the 2^{nd} digit 8 from dividend 88
\begin{array}{l}\phantom{78)}01\phantom{4}\\78\overline{)88}\\\phantom{78)}\underline{\phantom{}78\phantom{}}\\\phantom{78)}10\\\end{array}
Find closest multiple of 78 to 88. We see that 1 \times 78 = 78 is the nearest. Now subtract 78 from 88 to get reminder 10. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10
Since 10 is less than 78, stop the division. The reminder is 10. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}