Evaluate
\frac{22}{17}\approx 1.294117647
Factor
\frac{2 \cdot 11}{17} = 1\frac{5}{17} = 1.2941176470588236
Share
Copied to clipboard
\begin{array}{l}\phantom{68)}\phantom{1}\\68\overline{)88}\\\end{array}
Use the 1^{st} digit 8 from dividend 88
\begin{array}{l}\phantom{68)}0\phantom{2}\\68\overline{)88}\\\end{array}
Since 8 is less than 68, use the next digit 8 from dividend 88 and add 0 to the quotient
\begin{array}{l}\phantom{68)}0\phantom{3}\\68\overline{)88}\\\end{array}
Use the 2^{nd} digit 8 from dividend 88
\begin{array}{l}\phantom{68)}01\phantom{4}\\68\overline{)88}\\\phantom{68)}\underline{\phantom{}68\phantom{}}\\\phantom{68)}20\\\end{array}
Find closest multiple of 68 to 88. We see that 1 \times 68 = 68 is the nearest. Now subtract 68 from 88 to get reminder 20. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }20
Since 20 is less than 68, stop the division. The reminder is 20. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}