Evaluate
\frac{875}{31}\approx 28.225806452
Factor
\frac{5 ^ {3} \cdot 7}{31} = 28\frac{7}{31} = 28.225806451612904
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)875}\\\end{array}
Use the 1^{st} digit 8 from dividend 875
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)875}\\\end{array}
Since 8 is less than 31, use the next digit 7 from dividend 875 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)875}\\\end{array}
Use the 2^{nd} digit 7 from dividend 875
\begin{array}{l}\phantom{31)}02\phantom{4}\\31\overline{)875}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}25\\\end{array}
Find closest multiple of 31 to 87. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 87 to get reminder 25. Add 2 to quotient.
\begin{array}{l}\phantom{31)}02\phantom{5}\\31\overline{)875}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}255\\\end{array}
Use the 3^{rd} digit 5 from dividend 875
\begin{array}{l}\phantom{31)}028\phantom{6}\\31\overline{)875}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}255\\\phantom{31)}\underline{\phantom{}248\phantom{}}\\\phantom{31)99}7\\\end{array}
Find closest multiple of 31 to 255. We see that 8 \times 31 = 248 is the nearest. Now subtract 248 from 255 to get reminder 7. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }7
Since 7 is less than 31, stop the division. The reminder is 7. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}