Solve for a
a=-\frac{520b}{520-87b}
b\neq 0\text{ and }b\neq \frac{520}{87}
Solve for b
b=-\frac{520a}{520-87a}
a\neq 0\text{ and }a\neq \frac{520}{87}
Quiz
Linear Equation
5 problems similar to:
\frac { 87 } { 520 } = \frac { 1 } { a } + \frac { 1 } { b }
Share
Copied to clipboard
87ab=520b+520a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 520ab, the least common multiple of 520,a,b.
87ab-520a=520b
Subtract 520a from both sides.
\left(87b-520\right)a=520b
Combine all terms containing a.
\frac{\left(87b-520\right)a}{87b-520}=\frac{520b}{87b-520}
Divide both sides by 87b-520.
a=\frac{520b}{87b-520}
Dividing by 87b-520 undoes the multiplication by 87b-520.
a=\frac{520b}{87b-520}\text{, }a\neq 0
Variable a cannot be equal to 0.
87ab=520b+520a
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 520ab, the least common multiple of 520,a,b.
87ab-520b=520a
Subtract 520b from both sides.
\left(87a-520\right)b=520a
Combine all terms containing b.
\frac{\left(87a-520\right)b}{87a-520}=\frac{520a}{87a-520}
Divide both sides by 87a-520.
b=\frac{520a}{87a-520}
Dividing by 87a-520 undoes the multiplication by 87a-520.
b=\frac{520a}{87a-520}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}