Evaluate
\frac{864}{35}\approx 24.685714286
Factor
\frac{2 ^ {5} \cdot 3 ^ {3}}{5 \cdot 7} = 24\frac{24}{35} = 24.685714285714287
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)864}\\\end{array}
Use the 1^{st} digit 8 from dividend 864
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)864}\\\end{array}
Since 8 is less than 35, use the next digit 6 from dividend 864 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)864}\\\end{array}
Use the 2^{nd} digit 6 from dividend 864
\begin{array}{l}\phantom{35)}02\phantom{4}\\35\overline{)864}\\\phantom{35)}\underline{\phantom{}70\phantom{9}}\\\phantom{35)}16\\\end{array}
Find closest multiple of 35 to 86. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 86 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{35)}02\phantom{5}\\35\overline{)864}\\\phantom{35)}\underline{\phantom{}70\phantom{9}}\\\phantom{35)}164\\\end{array}
Use the 3^{rd} digit 4 from dividend 864
\begin{array}{l}\phantom{35)}024\phantom{6}\\35\overline{)864}\\\phantom{35)}\underline{\phantom{}70\phantom{9}}\\\phantom{35)}164\\\phantom{35)}\underline{\phantom{}140\phantom{}}\\\phantom{35)9}24\\\end{array}
Find closest multiple of 35 to 164. We see that 4 \times 35 = 140 is the nearest. Now subtract 140 from 164 to get reminder 24. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }24
Since 24 is less than 35, stop the division. The reminder is 24. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}