Solve for x
x = \frac{\sqrt{3743593} - 85}{186} \approx 9.945358525
x=\frac{-\sqrt{3743593}-85}{186}\approx -10.859337019
Graph
Share
Copied to clipboard
85x+93x^{2}=10044
Multiply both sides of the equation by 93.
85x+93x^{2}-10044=0
Subtract 10044 from both sides.
93x^{2}+85x-10044=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-85±\sqrt{85^{2}-4\times 93\left(-10044\right)}}{2\times 93}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 93 for a, 85 for b, and -10044 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-85±\sqrt{7225-4\times 93\left(-10044\right)}}{2\times 93}
Square 85.
x=\frac{-85±\sqrt{7225-372\left(-10044\right)}}{2\times 93}
Multiply -4 times 93.
x=\frac{-85±\sqrt{7225+3736368}}{2\times 93}
Multiply -372 times -10044.
x=\frac{-85±\sqrt{3743593}}{2\times 93}
Add 7225 to 3736368.
x=\frac{-85±\sqrt{3743593}}{186}
Multiply 2 times 93.
x=\frac{\sqrt{3743593}-85}{186}
Now solve the equation x=\frac{-85±\sqrt{3743593}}{186} when ± is plus. Add -85 to \sqrt{3743593}.
x=\frac{-\sqrt{3743593}-85}{186}
Now solve the equation x=\frac{-85±\sqrt{3743593}}{186} when ± is minus. Subtract \sqrt{3743593} from -85.
x=\frac{\sqrt{3743593}-85}{186} x=\frac{-\sqrt{3743593}-85}{186}
The equation is now solved.
85x+93x^{2}=10044
Multiply both sides of the equation by 93.
93x^{2}+85x=10044
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{93x^{2}+85x}{93}=\frac{10044}{93}
Divide both sides by 93.
x^{2}+\frac{85}{93}x=\frac{10044}{93}
Dividing by 93 undoes the multiplication by 93.
x^{2}+\frac{85}{93}x=108
Divide 10044 by 93.
x^{2}+\frac{85}{93}x+\left(\frac{85}{186}\right)^{2}=108+\left(\frac{85}{186}\right)^{2}
Divide \frac{85}{93}, the coefficient of the x term, by 2 to get \frac{85}{186}. Then add the square of \frac{85}{186} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{85}{93}x+\frac{7225}{34596}=108+\frac{7225}{34596}
Square \frac{85}{186} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{85}{93}x+\frac{7225}{34596}=\frac{3743593}{34596}
Add 108 to \frac{7225}{34596}.
\left(x+\frac{85}{186}\right)^{2}=\frac{3743593}{34596}
Factor x^{2}+\frac{85}{93}x+\frac{7225}{34596}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{85}{186}\right)^{2}}=\sqrt{\frac{3743593}{34596}}
Take the square root of both sides of the equation.
x+\frac{85}{186}=\frac{\sqrt{3743593}}{186} x+\frac{85}{186}=-\frac{\sqrt{3743593}}{186}
Simplify.
x=\frac{\sqrt{3743593}-85}{186} x=\frac{-\sqrt{3743593}-85}{186}
Subtract \frac{85}{186} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}