Evaluate
\frac{283}{8}=35.375
Factor
\frac{283}{2 ^ {3}} = 35\frac{3}{8} = 35.375
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)849}\\\end{array}
Use the 1^{st} digit 8 from dividend 849
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)849}\\\end{array}
Since 8 is less than 24, use the next digit 4 from dividend 849 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)849}\\\end{array}
Use the 2^{nd} digit 4 from dividend 849
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)849}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}12\\\end{array}
Find closest multiple of 24 to 84. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 84 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)849}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}129\\\end{array}
Use the 3^{rd} digit 9 from dividend 849
\begin{array}{l}\phantom{24)}035\phantom{6}\\24\overline{)849}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}129\\\phantom{24)}\underline{\phantom{}120\phantom{}}\\\phantom{24)99}9\\\end{array}
Find closest multiple of 24 to 129. We see that 5 \times 24 = 120 is the nearest. Now subtract 120 from 129 to get reminder 9. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }9
Since 9 is less than 24, stop the division. The reminder is 9. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}