Solve for m
m=-\frac{10\left(43n-420\right)}{n-420}
n\neq 0\text{ and }n\neq 420
Solve for n
n=\frac{420\left(m+10\right)}{m+430}
m\neq -10\text{ and }m\neq -430
Share
Copied to clipboard
n\times 840+n\left(m+10\right)\times 2=\left(m+10\right)\times 840
Variable m cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by n\left(m+10\right), the least common multiple of m+10,n.
n\times 840+\left(nm+10n\right)\times 2=\left(m+10\right)\times 840
Use the distributive property to multiply n by m+10.
n\times 840+2nm+20n=\left(m+10\right)\times 840
Use the distributive property to multiply nm+10n by 2.
860n+2nm=\left(m+10\right)\times 840
Combine n\times 840 and 20n to get 860n.
860n+2nm=840m+8400
Use the distributive property to multiply m+10 by 840.
860n+2nm-840m=8400
Subtract 840m from both sides.
2nm-840m=8400-860n
Subtract 860n from both sides.
\left(2n-840\right)m=8400-860n
Combine all terms containing m.
\frac{\left(2n-840\right)m}{2n-840}=\frac{8400-860n}{2n-840}
Divide both sides by 2n-840.
m=\frac{8400-860n}{2n-840}
Dividing by 2n-840 undoes the multiplication by 2n-840.
m=\frac{10\left(420-43n\right)}{n-420}
Divide 8400-860n by 2n-840.
m=\frac{10\left(420-43n\right)}{n-420}\text{, }m\neq -10
Variable m cannot be equal to -10.
n\times 840+n\left(m+10\right)\times 2=\left(m+10\right)\times 840
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n\left(m+10\right), the least common multiple of m+10,n.
n\times 840+\left(nm+10n\right)\times 2=\left(m+10\right)\times 840
Use the distributive property to multiply n by m+10.
n\times 840+2nm+20n=\left(m+10\right)\times 840
Use the distributive property to multiply nm+10n by 2.
860n+2nm=\left(m+10\right)\times 840
Combine n\times 840 and 20n to get 860n.
860n+2nm=840m+8400
Use the distributive property to multiply m+10 by 840.
\left(860+2m\right)n=840m+8400
Combine all terms containing n.
\left(2m+860\right)n=840m+8400
The equation is in standard form.
\frac{\left(2m+860\right)n}{2m+860}=\frac{840m+8400}{2m+860}
Divide both sides by 860+2m.
n=\frac{840m+8400}{2m+860}
Dividing by 860+2m undoes the multiplication by 860+2m.
n=\frac{420\left(m+10\right)}{m+430}
Divide 8400+840m by 860+2m.
n=\frac{420\left(m+10\right)}{m+430}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}