Solve for x
x=-12
x=25
Graph
Share
Copied to clipboard
x\times 84=x\left(x-4\right)+\left(x-4\right)\times 75
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
x\times 84=x^{2}-4x+\left(x-4\right)\times 75
Use the distributive property to multiply x by x-4.
x\times 84=x^{2}-4x+75x-300
Use the distributive property to multiply x-4 by 75.
x\times 84=x^{2}+71x-300
Combine -4x and 75x to get 71x.
x\times 84-x^{2}=71x-300
Subtract x^{2} from both sides.
x\times 84-x^{2}-71x=-300
Subtract 71x from both sides.
13x-x^{2}=-300
Combine x\times 84 and -71x to get 13x.
13x-x^{2}+300=0
Add 300 to both sides.
-x^{2}+13x+300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\left(-1\right)\times 300}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 13 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-1\right)\times 300}}{2\left(-1\right)}
Square 13.
x=\frac{-13±\sqrt{169+4\times 300}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-13±\sqrt{169+1200}}{2\left(-1\right)}
Multiply 4 times 300.
x=\frac{-13±\sqrt{1369}}{2\left(-1\right)}
Add 169 to 1200.
x=\frac{-13±37}{2\left(-1\right)}
Take the square root of 1369.
x=\frac{-13±37}{-2}
Multiply 2 times -1.
x=\frac{24}{-2}
Now solve the equation x=\frac{-13±37}{-2} when ± is plus. Add -13 to 37.
x=-12
Divide 24 by -2.
x=-\frac{50}{-2}
Now solve the equation x=\frac{-13±37}{-2} when ± is minus. Subtract 37 from -13.
x=25
Divide -50 by -2.
x=-12 x=25
The equation is now solved.
x\times 84=x\left(x-4\right)+\left(x-4\right)\times 75
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x-4,x.
x\times 84=x^{2}-4x+\left(x-4\right)\times 75
Use the distributive property to multiply x by x-4.
x\times 84=x^{2}-4x+75x-300
Use the distributive property to multiply x-4 by 75.
x\times 84=x^{2}+71x-300
Combine -4x and 75x to get 71x.
x\times 84-x^{2}=71x-300
Subtract x^{2} from both sides.
x\times 84-x^{2}-71x=-300
Subtract 71x from both sides.
13x-x^{2}=-300
Combine x\times 84 and -71x to get 13x.
-x^{2}+13x=-300
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+13x}{-1}=-\frac{300}{-1}
Divide both sides by -1.
x^{2}+\frac{13}{-1}x=-\frac{300}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-13x=-\frac{300}{-1}
Divide 13 by -1.
x^{2}-13x=300
Divide -300 by -1.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=300+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=300+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{1369}{4}
Add 300 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{1369}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{1369}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{37}{2} x-\frac{13}{2}=-\frac{37}{2}
Simplify.
x=25 x=-12
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}