Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x\times 84-\left(3x+6\right)\times 70=2x\left(x+2\right)
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+2\right), the least common multiple of x+2,x,3.
252x-\left(3x+6\right)\times 70=2x\left(x+2\right)
Multiply 3 and 84 to get 252.
252x-\left(210x+420\right)=2x\left(x+2\right)
Use the distributive property to multiply 3x+6 by 70.
252x-210x-420=2x\left(x+2\right)
To find the opposite of 210x+420, find the opposite of each term.
42x-420=2x\left(x+2\right)
Combine 252x and -210x to get 42x.
42x-420=2x^{2}+4x
Use the distributive property to multiply 2x by x+2.
42x-420-2x^{2}=4x
Subtract 2x^{2} from both sides.
42x-420-2x^{2}-4x=0
Subtract 4x from both sides.
38x-420-2x^{2}=0
Combine 42x and -4x to get 38x.
-2x^{2}+38x-420=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-38±\sqrt{38^{2}-4\left(-2\right)\left(-420\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 38 for b, and -420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-38±\sqrt{1444-4\left(-2\right)\left(-420\right)}}{2\left(-2\right)}
Square 38.
x=\frac{-38±\sqrt{1444+8\left(-420\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-38±\sqrt{1444-3360}}{2\left(-2\right)}
Multiply 8 times -420.
x=\frac{-38±\sqrt{-1916}}{2\left(-2\right)}
Add 1444 to -3360.
x=\frac{-38±2\sqrt{479}i}{2\left(-2\right)}
Take the square root of -1916.
x=\frac{-38±2\sqrt{479}i}{-4}
Multiply 2 times -2.
x=\frac{-38+2\sqrt{479}i}{-4}
Now solve the equation x=\frac{-38±2\sqrt{479}i}{-4} when ± is plus. Add -38 to 2i\sqrt{479}.
x=\frac{-\sqrt{479}i+19}{2}
Divide -38+2i\sqrt{479} by -4.
x=\frac{-2\sqrt{479}i-38}{-4}
Now solve the equation x=\frac{-38±2\sqrt{479}i}{-4} when ± is minus. Subtract 2i\sqrt{479} from -38.
x=\frac{19+\sqrt{479}i}{2}
Divide -38-2i\sqrt{479} by -4.
x=\frac{-\sqrt{479}i+19}{2} x=\frac{19+\sqrt{479}i}{2}
The equation is now solved.
3x\times 84-\left(3x+6\right)\times 70=2x\left(x+2\right)
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by 3x\left(x+2\right), the least common multiple of x+2,x,3.
252x-\left(3x+6\right)\times 70=2x\left(x+2\right)
Multiply 3 and 84 to get 252.
252x-\left(210x+420\right)=2x\left(x+2\right)
Use the distributive property to multiply 3x+6 by 70.
252x-210x-420=2x\left(x+2\right)
To find the opposite of 210x+420, find the opposite of each term.
42x-420=2x\left(x+2\right)
Combine 252x and -210x to get 42x.
42x-420=2x^{2}+4x
Use the distributive property to multiply 2x by x+2.
42x-420-2x^{2}=4x
Subtract 2x^{2} from both sides.
42x-420-2x^{2}-4x=0
Subtract 4x from both sides.
38x-420-2x^{2}=0
Combine 42x and -4x to get 38x.
38x-2x^{2}=420
Add 420 to both sides. Anything plus zero gives itself.
-2x^{2}+38x=420
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+38x}{-2}=\frac{420}{-2}
Divide both sides by -2.
x^{2}+\frac{38}{-2}x=\frac{420}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-19x=\frac{420}{-2}
Divide 38 by -2.
x^{2}-19x=-210
Divide 420 by -2.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-210+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-19x+\frac{361}{4}=-210+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-19x+\frac{361}{4}=-\frac{479}{4}
Add -210 to \frac{361}{4}.
\left(x-\frac{19}{2}\right)^{2}=-\frac{479}{4}
Factor x^{2}-19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{-\frac{479}{4}}
Take the square root of both sides of the equation.
x-\frac{19}{2}=\frac{\sqrt{479}i}{2} x-\frac{19}{2}=-\frac{\sqrt{479}i}{2}
Simplify.
x=\frac{19+\sqrt{479}i}{2} x=\frac{-\sqrt{479}i+19}{2}
Add \frac{19}{2} to both sides of the equation.