Skip to main content
Solve for M
Tick mark Image

Similar Problems from Web Search

Share

2M\times 830\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1520M, the least common multiple of 760,16,M.
1660M\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 2 and 830 to get 1660.
1660M\times 100000\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Calculate 10 to the power of 5 and get 100000.
166000000M\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 1660 and 100000 to get 166000000.
75696000M=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 166000000 and 0.456 to get 75696000.
75696000M=\left(\frac{24}{1600}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Expand \frac{0.24}{16} by multiplying both numerator and the denominator by 100.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Reduce the fraction \frac{24}{1600} to lowest terms by extracting and canceling out 8.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 24.9\times 10\times 1520M
Multiply 8.3 and 3 to get 24.9.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 249\times 1520M
Multiply 24.9 and 10 to get 249.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 378480M
Multiply 249 and 1520 to get 378480.
75696000M=\left(\frac{3}{200}\times 378480+378480\times \frac{0.29}{M}\right)M
Use the distributive property to multiply \frac{3}{200}+\frac{0.29}{M} by 378480.
75696000M=\left(\frac{3\times 378480}{200}+378480\times \frac{0.29}{M}\right)M
Express \frac{3}{200}\times 378480 as a single fraction.
75696000M=\left(\frac{1135440}{200}+378480\times \frac{0.29}{M}\right)M
Multiply 3 and 378480 to get 1135440.
75696000M=\left(\frac{28386}{5}+378480\times \frac{0.29}{M}\right)M
Reduce the fraction \frac{1135440}{200} to lowest terms by extracting and canceling out 40.
75696000M=\frac{28386}{5}M+378480\times \frac{0.29}{M}M
Use the distributive property to multiply \frac{28386}{5}+378480\times \frac{0.29}{M} by M.
75696000M-\frac{28386}{5}M=378480\times \frac{0.29}{M}M
Subtract \frac{28386}{5}M from both sides.
\frac{378451614}{5}M=378480\times \frac{0.29}{M}M
Combine 75696000M and -\frac{28386}{5}M to get \frac{378451614}{5}M.
\frac{378451614}{5}M-378480\times \frac{0.29}{M}M=0
Subtract 378480\times \frac{0.29}{M}M from both sides.
\frac{378451614}{5}M\times 5M-378480\times 5\times 0.29M=0
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5M, the least common multiple of 5,M.
5\times \frac{378451614}{5}MM-0.29\times 5\times 378480M=0
Reorder the terms.
5\times \frac{378451614}{5}M^{2}-0.29\times 5\times 378480M=0
Multiply M and M to get M^{2}.
378451614M^{2}-0.29\times 5\times 378480M=0
Cancel out 5 and 5.
378451614M^{2}-1.45\times 378480M=0
Multiply -0.29 and 5 to get -1.45.
378451614M^{2}-548796M=0
Multiply -1.45 and 378480 to get -548796.
M\left(378451614M-548796\right)=0
Factor out M.
M=0 M=\frac{58}{39997}
To find equation solutions, solve M=0 and 378451614M-548796=0.
M=\frac{58}{39997}
Variable M cannot be equal to 0.
2M\times 830\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1520M, the least common multiple of 760,16,M.
1660M\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 2 and 830 to get 1660.
1660M\times 100000\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Calculate 10 to the power of 5 and get 100000.
166000000M\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 1660 and 100000 to get 166000000.
75696000M=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 166000000 and 0.456 to get 75696000.
75696000M=\left(\frac{24}{1600}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Expand \frac{0.24}{16} by multiplying both numerator and the denominator by 100.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Reduce the fraction \frac{24}{1600} to lowest terms by extracting and canceling out 8.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 24.9\times 10\times 1520M
Multiply 8.3 and 3 to get 24.9.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 249\times 1520M
Multiply 24.9 and 10 to get 249.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 378480M
Multiply 249 and 1520 to get 378480.
75696000M=\left(\frac{3}{200}\times 378480+378480\times \frac{0.29}{M}\right)M
Use the distributive property to multiply \frac{3}{200}+\frac{0.29}{M} by 378480.
75696000M=\left(\frac{3\times 378480}{200}+378480\times \frac{0.29}{M}\right)M
Express \frac{3}{200}\times 378480 as a single fraction.
75696000M=\left(\frac{1135440}{200}+378480\times \frac{0.29}{M}\right)M
Multiply 3 and 378480 to get 1135440.
75696000M=\left(\frac{28386}{5}+378480\times \frac{0.29}{M}\right)M
Reduce the fraction \frac{1135440}{200} to lowest terms by extracting and canceling out 40.
75696000M=\frac{28386}{5}M+378480\times \frac{0.29}{M}M
Use the distributive property to multiply \frac{28386}{5}+378480\times \frac{0.29}{M} by M.
75696000M-\frac{28386}{5}M=378480\times \frac{0.29}{M}M
Subtract \frac{28386}{5}M from both sides.
\frac{378451614}{5}M=378480\times \frac{0.29}{M}M
Combine 75696000M and -\frac{28386}{5}M to get \frac{378451614}{5}M.
\frac{378451614}{5}M-378480\times \frac{0.29}{M}M=0
Subtract 378480\times \frac{0.29}{M}M from both sides.
\frac{378451614}{5}M\times 5M-378480\times 5\times 0.29M=0
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5M, the least common multiple of 5,M.
5\times \frac{378451614}{5}MM-0.29\times 5\times 378480M=0
Reorder the terms.
5\times \frac{378451614}{5}M^{2}-0.29\times 5\times 378480M=0
Multiply M and M to get M^{2}.
378451614M^{2}-0.29\times 5\times 378480M=0
Cancel out 5 and 5.
378451614M^{2}-1.45\times 378480M=0
Multiply -0.29 and 5 to get -1.45.
378451614M^{2}-548796M=0
Multiply -1.45 and 378480 to get -548796.
M=\frac{-\left(-548796\right)±\sqrt{\left(-548796\right)^{2}}}{2\times 378451614}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 378451614 for a, -548796 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
M=\frac{-\left(-548796\right)±548796}{2\times 378451614}
Take the square root of \left(-548796\right)^{2}.
M=\frac{548796±548796}{2\times 378451614}
The opposite of -548796 is 548796.
M=\frac{548796±548796}{756903228}
Multiply 2 times 378451614.
M=\frac{1097592}{756903228}
Now solve the equation M=\frac{548796±548796}{756903228} when ± is plus. Add 548796 to 548796.
M=\frac{58}{39997}
Reduce the fraction \frac{1097592}{756903228} to lowest terms by extracting and canceling out 18924.
M=\frac{0}{756903228}
Now solve the equation M=\frac{548796±548796}{756903228} when ± is minus. Subtract 548796 from 548796.
M=0
Divide 0 by 756903228.
M=\frac{58}{39997} M=0
The equation is now solved.
M=\frac{58}{39997}
Variable M cannot be equal to 0.
2M\times 830\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1520M, the least common multiple of 760,16,M.
1660M\times 10^{5}\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 2 and 830 to get 1660.
1660M\times 100000\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Calculate 10 to the power of 5 and get 100000.
166000000M\times 0.456=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 1660 and 100000 to get 166000000.
75696000M=\left(\frac{0.24}{16}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Multiply 166000000 and 0.456 to get 75696000.
75696000M=\left(\frac{24}{1600}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Expand \frac{0.24}{16} by multiplying both numerator and the denominator by 100.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 8.3\times 3\times 10\times 1520M
Reduce the fraction \frac{24}{1600} to lowest terms by extracting and canceling out 8.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 24.9\times 10\times 1520M
Multiply 8.3 and 3 to get 24.9.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 249\times 1520M
Multiply 24.9 and 10 to get 249.
75696000M=\left(\frac{3}{200}+\frac{0.29}{M}\right)\times 378480M
Multiply 249 and 1520 to get 378480.
75696000M=\left(\frac{3}{200}\times 378480+378480\times \frac{0.29}{M}\right)M
Use the distributive property to multiply \frac{3}{200}+\frac{0.29}{M} by 378480.
75696000M=\left(\frac{3\times 378480}{200}+378480\times \frac{0.29}{M}\right)M
Express \frac{3}{200}\times 378480 as a single fraction.
75696000M=\left(\frac{1135440}{200}+378480\times \frac{0.29}{M}\right)M
Multiply 3 and 378480 to get 1135440.
75696000M=\left(\frac{28386}{5}+378480\times \frac{0.29}{M}\right)M
Reduce the fraction \frac{1135440}{200} to lowest terms by extracting and canceling out 40.
75696000M=\frac{28386}{5}M+378480\times \frac{0.29}{M}M
Use the distributive property to multiply \frac{28386}{5}+378480\times \frac{0.29}{M} by M.
75696000M-\frac{28386}{5}M=378480\times \frac{0.29}{M}M
Subtract \frac{28386}{5}M from both sides.
\frac{378451614}{5}M=378480\times \frac{0.29}{M}M
Combine 75696000M and -\frac{28386}{5}M to get \frac{378451614}{5}M.
\frac{378451614}{5}M-378480\times \frac{0.29}{M}M=0
Subtract 378480\times \frac{0.29}{M}M from both sides.
\frac{378451614}{5}M\times 5M-378480\times 5\times 0.29M=0
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5M, the least common multiple of 5,M.
5\times \frac{378451614}{5}MM-0.29\times 5\times 378480M=0
Reorder the terms.
5\times \frac{378451614}{5}M^{2}-0.29\times 5\times 378480M=0
Multiply M and M to get M^{2}.
378451614M^{2}-0.29\times 5\times 378480M=0
Cancel out 5 and 5.
378451614M^{2}-1.45\times 378480M=0
Multiply -0.29 and 5 to get -1.45.
378451614M^{2}-548796M=0
Multiply -1.45 and 378480 to get -548796.
\frac{378451614M^{2}-548796M}{378451614}=\frac{0}{378451614}
Divide both sides by 378451614.
M^{2}+\left(-\frac{548796}{378451614}\right)M=\frac{0}{378451614}
Dividing by 378451614 undoes the multiplication by 378451614.
M^{2}-\frac{58}{39997}M=\frac{0}{378451614}
Reduce the fraction \frac{-548796}{378451614} to lowest terms by extracting and canceling out 9462.
M^{2}-\frac{58}{39997}M=0
Divide 0 by 378451614.
M^{2}-\frac{58}{39997}M+\left(-\frac{29}{39997}\right)^{2}=\left(-\frac{29}{39997}\right)^{2}
Divide -\frac{58}{39997}, the coefficient of the x term, by 2 to get -\frac{29}{39997}. Then add the square of -\frac{29}{39997} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
M^{2}-\frac{58}{39997}M+\frac{841}{1599760009}=\frac{841}{1599760009}
Square -\frac{29}{39997} by squaring both the numerator and the denominator of the fraction.
\left(M-\frac{29}{39997}\right)^{2}=\frac{841}{1599760009}
Factor M^{2}-\frac{58}{39997}M+\frac{841}{1599760009}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(M-\frac{29}{39997}\right)^{2}}=\sqrt{\frac{841}{1599760009}}
Take the square root of both sides of the equation.
M-\frac{29}{39997}=\frac{29}{39997} M-\frac{29}{39997}=-\frac{29}{39997}
Simplify.
M=\frac{58}{39997} M=0
Add \frac{29}{39997} to both sides of the equation.
M=\frac{58}{39997}
Variable M cannot be equal to 0.