Evaluate
\frac{407}{7}\approx 58.142857143
Factor
\frac{11 \cdot 37}{7} = 58\frac{1}{7} = 58.142857142857146
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)814}\\\end{array}
Use the 1^{st} digit 8 from dividend 814
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)814}\\\end{array}
Since 8 is less than 14, use the next digit 1 from dividend 814 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)814}\\\end{array}
Use the 2^{nd} digit 1 from dividend 814
\begin{array}{l}\phantom{14)}05\phantom{4}\\14\overline{)814}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)}11\\\end{array}
Find closest multiple of 14 to 81. We see that 5 \times 14 = 70 is the nearest. Now subtract 70 from 81 to get reminder 11. Add 5 to quotient.
\begin{array}{l}\phantom{14)}05\phantom{5}\\14\overline{)814}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)}114\\\end{array}
Use the 3^{rd} digit 4 from dividend 814
\begin{array}{l}\phantom{14)}058\phantom{6}\\14\overline{)814}\\\phantom{14)}\underline{\phantom{}70\phantom{9}}\\\phantom{14)}114\\\phantom{14)}\underline{\phantom{}112\phantom{}}\\\phantom{14)99}2\\\end{array}
Find closest multiple of 14 to 114. We see that 8 \times 14 = 112 is the nearest. Now subtract 112 from 114 to get reminder 2. Add 8 to quotient.
\text{Quotient: }58 \text{Reminder: }2
Since 2 is less than 14, stop the division. The reminder is 2. The topmost line 058 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}