Solve for x
x = \frac{1300}{51} = 25\frac{25}{51} \approx 25.490196078
Graph
Share
Copied to clipboard
32\left(81-x\right)=19\left(68+x\right)
Multiply both sides of the equation by 608, the least common multiple of 19,32.
2592-32x=19\left(68+x\right)
Use the distributive property to multiply 32 by 81-x.
2592-32x=1292+19x
Use the distributive property to multiply 19 by 68+x.
2592-32x-19x=1292
Subtract 19x from both sides.
2592-51x=1292
Combine -32x and -19x to get -51x.
-51x=1292-2592
Subtract 2592 from both sides.
-51x=-1300
Subtract 2592 from 1292 to get -1300.
x=\frac{-1300}{-51}
Divide both sides by -51.
x=\frac{1300}{51}
Fraction \frac{-1300}{-51} can be simplified to \frac{1300}{51} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}