Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}\times \frac{1}{a+9}
Divide \frac{81-a^{2}}{a^{2}+6a+9} by \frac{9-a}{2a+6} by multiplying \frac{81-a^{2}}{a^{2}+6a+9} by the reciprocal of \frac{9-a}{2a+6}.
\frac{2\left(a-9\right)\left(-a-9\right)\left(a+3\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Factor the expressions that are not already factored in \frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}.
\frac{-2\left(-a-9\right)\left(a+3\right)\left(-a+9\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Extract the negative sign in -9+a.
\frac{-2\left(-a-9\right)}{a+3}\times \frac{1}{a+9}
Cancel out \left(a+3\right)\left(-a+9\right) in both numerator and denominator.
\frac{-2\left(-a-9\right)}{\left(a+3\right)\left(a+9\right)}
Multiply \frac{-2\left(-a-9\right)}{a+3} times \frac{1}{a+9} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(-1\right)\left(a+9\right)}{\left(a+3\right)\left(a+9\right)}
Extract the negative sign in -a-9.
\frac{-2\left(-1\right)}{a+3}
Cancel out a+9 in both numerator and denominator.
\frac{2}{a+3}
Multiply -2 and -1 to get 2.
\frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}\times \frac{1}{a+9}
Divide \frac{81-a^{2}}{a^{2}+6a+9} by \frac{9-a}{2a+6} by multiplying \frac{81-a^{2}}{a^{2}+6a+9} by the reciprocal of \frac{9-a}{2a+6}.
\frac{2\left(a-9\right)\left(-a-9\right)\left(a+3\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Factor the expressions that are not already factored in \frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}.
\frac{-2\left(-a-9\right)\left(a+3\right)\left(-a+9\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Extract the negative sign in -9+a.
\frac{-2\left(-a-9\right)}{a+3}\times \frac{1}{a+9}
Cancel out \left(a+3\right)\left(-a+9\right) in both numerator and denominator.
\frac{-2\left(-a-9\right)}{\left(a+3\right)\left(a+9\right)}
Multiply \frac{-2\left(-a-9\right)}{a+3} times \frac{1}{a+9} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(-1\right)\left(a+9\right)}{\left(a+3\right)\left(a+9\right)}
Extract the negative sign in -a-9.
\frac{-2\left(-1\right)}{a+3}
Cancel out a+9 in both numerator and denominator.
\frac{2}{a+3}
Multiply -2 and -1 to get 2.