Solve for x
x = \frac{\sqrt{505} - 10}{9} \approx 1.385800562
x=\frac{-\sqrt{505}-10}{9}\approx -3.608022784
Graph
Share
Copied to clipboard
5\times 81-\frac{81}{5}x\times 5x=180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
405-\frac{81}{5}x\times 5x=180x
Multiply 5 and 81 to get 405.
405-\frac{81}{5}x^{2}\times 5=180x
Multiply x and x to get x^{2}.
405-81x^{2}=180x
Cancel out 5 and 5.
405-81x^{2}-180x=0
Subtract 180x from both sides.
-81x^{2}-180x+405=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\left(-81\right)\times 405}}{2\left(-81\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -81 for a, -180 for b, and 405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\left(-81\right)\times 405}}{2\left(-81\right)}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400+324\times 405}}{2\left(-81\right)}
Multiply -4 times -81.
x=\frac{-\left(-180\right)±\sqrt{32400+131220}}{2\left(-81\right)}
Multiply 324 times 405.
x=\frac{-\left(-180\right)±\sqrt{163620}}{2\left(-81\right)}
Add 32400 to 131220.
x=\frac{-\left(-180\right)±18\sqrt{505}}{2\left(-81\right)}
Take the square root of 163620.
x=\frac{180±18\sqrt{505}}{2\left(-81\right)}
The opposite of -180 is 180.
x=\frac{180±18\sqrt{505}}{-162}
Multiply 2 times -81.
x=\frac{18\sqrt{505}+180}{-162}
Now solve the equation x=\frac{180±18\sqrt{505}}{-162} when ± is plus. Add 180 to 18\sqrt{505}.
x=\frac{-\sqrt{505}-10}{9}
Divide 180+18\sqrt{505} by -162.
x=\frac{180-18\sqrt{505}}{-162}
Now solve the equation x=\frac{180±18\sqrt{505}}{-162} when ± is minus. Subtract 18\sqrt{505} from 180.
x=\frac{\sqrt{505}-10}{9}
Divide 180-18\sqrt{505} by -162.
x=\frac{-\sqrt{505}-10}{9} x=\frac{\sqrt{505}-10}{9}
The equation is now solved.
5\times 81-\frac{81}{5}x\times 5x=180x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5x, the least common multiple of x,5.
405-\frac{81}{5}x\times 5x=180x
Multiply 5 and 81 to get 405.
405-\frac{81}{5}x^{2}\times 5=180x
Multiply x and x to get x^{2}.
405-81x^{2}=180x
Cancel out 5 and 5.
405-81x^{2}-180x=0
Subtract 180x from both sides.
-81x^{2}-180x=-405
Subtract 405 from both sides. Anything subtracted from zero gives its negation.
\frac{-81x^{2}-180x}{-81}=-\frac{405}{-81}
Divide both sides by -81.
x^{2}+\left(-\frac{180}{-81}\right)x=-\frac{405}{-81}
Dividing by -81 undoes the multiplication by -81.
x^{2}+\frac{20}{9}x=-\frac{405}{-81}
Reduce the fraction \frac{-180}{-81} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{20}{9}x=5
Divide -405 by -81.
x^{2}+\frac{20}{9}x+\left(\frac{10}{9}\right)^{2}=5+\left(\frac{10}{9}\right)^{2}
Divide \frac{20}{9}, the coefficient of the x term, by 2 to get \frac{10}{9}. Then add the square of \frac{10}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{20}{9}x+\frac{100}{81}=5+\frac{100}{81}
Square \frac{10}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{20}{9}x+\frac{100}{81}=\frac{505}{81}
Add 5 to \frac{100}{81}.
\left(x+\frac{10}{9}\right)^{2}=\frac{505}{81}
Factor x^{2}+\frac{20}{9}x+\frac{100}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{9}\right)^{2}}=\sqrt{\frac{505}{81}}
Take the square root of both sides of the equation.
x+\frac{10}{9}=\frac{\sqrt{505}}{9} x+\frac{10}{9}=-\frac{\sqrt{505}}{9}
Simplify.
x=\frac{\sqrt{505}-10}{9} x=\frac{-\sqrt{505}-10}{9}
Subtract \frac{10}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}