Solve for t
t = \frac{3}{2} = 1\frac{1}{2} = 1.5
t = \frac{54}{25} = 2\frac{4}{25} = 2.16
Share
Copied to clipboard
\left(t-2\right)\times 81=-t\times 2+t\left(t-2\right)\times 50
Variable t cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by t\left(t-2\right), the least common multiple of t,2-t.
81t-162=-t\times 2+t\left(t-2\right)\times 50
Use the distributive property to multiply t-2 by 81.
81t-162=-2t+t\left(t-2\right)\times 50
Multiply -1 and 2 to get -2.
81t-162=-2t+\left(t^{2}-2t\right)\times 50
Use the distributive property to multiply t by t-2.
81t-162=-2t+50t^{2}-100t
Use the distributive property to multiply t^{2}-2t by 50.
81t-162=-102t+50t^{2}
Combine -2t and -100t to get -102t.
81t-162+102t=50t^{2}
Add 102t to both sides.
183t-162=50t^{2}
Combine 81t and 102t to get 183t.
183t-162-50t^{2}=0
Subtract 50t^{2} from both sides.
-50t^{2}+183t-162=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-183±\sqrt{183^{2}-4\left(-50\right)\left(-162\right)}}{2\left(-50\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -50 for a, 183 for b, and -162 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-183±\sqrt{33489-4\left(-50\right)\left(-162\right)}}{2\left(-50\right)}
Square 183.
t=\frac{-183±\sqrt{33489+200\left(-162\right)}}{2\left(-50\right)}
Multiply -4 times -50.
t=\frac{-183±\sqrt{33489-32400}}{2\left(-50\right)}
Multiply 200 times -162.
t=\frac{-183±\sqrt{1089}}{2\left(-50\right)}
Add 33489 to -32400.
t=\frac{-183±33}{2\left(-50\right)}
Take the square root of 1089.
t=\frac{-183±33}{-100}
Multiply 2 times -50.
t=-\frac{150}{-100}
Now solve the equation t=\frac{-183±33}{-100} when ± is plus. Add -183 to 33.
t=\frac{3}{2}
Reduce the fraction \frac{-150}{-100} to lowest terms by extracting and canceling out 50.
t=-\frac{216}{-100}
Now solve the equation t=\frac{-183±33}{-100} when ± is minus. Subtract 33 from -183.
t=\frac{54}{25}
Reduce the fraction \frac{-216}{-100} to lowest terms by extracting and canceling out 4.
t=\frac{3}{2} t=\frac{54}{25}
The equation is now solved.
\left(t-2\right)\times 81=-t\times 2+t\left(t-2\right)\times 50
Variable t cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by t\left(t-2\right), the least common multiple of t,2-t.
81t-162=-t\times 2+t\left(t-2\right)\times 50
Use the distributive property to multiply t-2 by 81.
81t-162=-2t+t\left(t-2\right)\times 50
Multiply -1 and 2 to get -2.
81t-162=-2t+\left(t^{2}-2t\right)\times 50
Use the distributive property to multiply t by t-2.
81t-162=-2t+50t^{2}-100t
Use the distributive property to multiply t^{2}-2t by 50.
81t-162=-102t+50t^{2}
Combine -2t and -100t to get -102t.
81t-162+102t=50t^{2}
Add 102t to both sides.
183t-162=50t^{2}
Combine 81t and 102t to get 183t.
183t-162-50t^{2}=0
Subtract 50t^{2} from both sides.
183t-50t^{2}=162
Add 162 to both sides. Anything plus zero gives itself.
-50t^{2}+183t=162
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-50t^{2}+183t}{-50}=\frac{162}{-50}
Divide both sides by -50.
t^{2}+\frac{183}{-50}t=\frac{162}{-50}
Dividing by -50 undoes the multiplication by -50.
t^{2}-\frac{183}{50}t=\frac{162}{-50}
Divide 183 by -50.
t^{2}-\frac{183}{50}t=-\frac{81}{25}
Reduce the fraction \frac{162}{-50} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{183}{50}t+\left(-\frac{183}{100}\right)^{2}=-\frac{81}{25}+\left(-\frac{183}{100}\right)^{2}
Divide -\frac{183}{50}, the coefficient of the x term, by 2 to get -\frac{183}{100}. Then add the square of -\frac{183}{100} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{183}{50}t+\frac{33489}{10000}=-\frac{81}{25}+\frac{33489}{10000}
Square -\frac{183}{100} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{183}{50}t+\frac{33489}{10000}=\frac{1089}{10000}
Add -\frac{81}{25} to \frac{33489}{10000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{183}{100}\right)^{2}=\frac{1089}{10000}
Factor t^{2}-\frac{183}{50}t+\frac{33489}{10000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{183}{100}\right)^{2}}=\sqrt{\frac{1089}{10000}}
Take the square root of both sides of the equation.
t-\frac{183}{100}=\frac{33}{100} t-\frac{183}{100}=-\frac{33}{100}
Simplify.
t=\frac{54}{25} t=\frac{3}{2}
Add \frac{183}{100} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}